
 
 

  

 
            
       

 

 
 

 
 

   

 

 
   

 
 

   

   
 

    

 
 

 

5.73 Lecture #25 25 - 1 
HSO + HZeeman 

Coupled vs. Uncoupled Basis Sets 

Last time: 
matrices for J2, J+, J–, Jz, Jx, Jy in |jmj⟩ basis for J = 0, ½, 1 
Pauli spin ½ matrices !
arbitrary 2 × 2 matrix M = a0I + a1 ⋅σ

! 
decomposed as scalar plus vector. 

When M is ! → visualization via fictitious vector in fictitious B-field. 

When M is a term in H ® idea that arbitrary operator can be 
decomposed as a sum of the terms that behave like components of J = 0, 
J = 1, J = 2… This leads to spherical tensor algebra. 

types of operators 

aJ 
!q 

J1 ⋅ J2 

⎤ 
⎥ 
⎥ 
⎥⎦ 

e.g. magnetic moment (a is a known constant or a function of r) 
how to evaluate matrix elements (e.g. Stark Effect) 
e.g. Spin-Orbit 

Special simplification of Trace (AH) 

For example 

⎛ ⎞ 
⎟
⎟
⎟ 

H11 H12 H13 

H21 H22 H23 

⎛ ⎞0 1 0 
0 0 0 
0 0 0 

⎜
⎜
⎜ 

⎜
⎜ 

⎟
⎟A = H =, 

⎝ ⎠ H31 H32 H33⎝ ⎠ 
⎛ ⎞H21 H22 H23 

0 0 0 
0 0 0 

⎜ 
⎜
⎜⎝ 

⎟ 
⎟
⎟⎠ 

AH = simpler 

extreme simplification!
Trace(AH) = H21 

A12 picks out only H21, A21 picks out only H12. 

Extreme labor saving trick! 
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5.73 Lecture #25 25 - 2 

TODAY: 

1. HSO + HZeeman as illustrative 

2. Dimension of two basis sets, ⎜JLSMJ〉 and ⎜LMLSMS〉, is the same 

3. matrix elements of HSO in both basis sets 

4. matrix elements of HZeeman in both basis sets 

5. ladder operators and orthogonality for transformation between basis 

sets. Necessary to be able to evaluate matrix elements of HZeeman in 

“coupled basis”. Why? Because coupled basis set does not explicitly 

reveal the effects of Lz or Sz. 

Nos. 3, 4 and 5 will be repeated in Lecture #26. 

Suppose we have 2 kinds of angular momenta, which can be coupled to each other to 
form a total angular momentum. !

L orbital⎪⎫ 
! ⎬ operate on different coordinates or in different vector spaces 
S spin ⎪⎭
! ! !
J=L+S total 

J 

L

S 

The components of L,S, and J each follow the standard angular momentum definition 
commutation rule, but, in addition 

!
S⎡⎣ ⎤⎦ = 0 , ⎡⎣Ji, L j ⎤⎦ = i! Σε ijk Lk

!
L, 

k 

⎡⎣Ji,S j ⎤⎦ = i! Σε ijkSk. k 

These commutation rules specify that L and S act like vectors with respect to J but as 
scalars with respect to each other. 

! 
→ jmj
! 
→ ℓmℓ! 
→ sm s 

Coupled ∣jℓsmj〉 vs. uncoupled ∣ℓmℓ〉∣sms〉 representations. 

* matrix elements of certain operators are more convenient in one basis set than the 
other 

* a unitary transformation between basis sets must exist 
* limiting cases for energy level patterns 

(and Zeeman tuning rates 
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5.73 Lecture #25 25 - 3 
matrix elements of ℓ and s 
will each give a factor of "#

⎡ ζ
HSO nℓ⎢ = ξ(r)ℓ ⋅s ≡ ℓ ⋅s 

" ⎢ each will give a factor of !
1.⎢ anomalous g - value of e− 

⎢HZeeman = −γB (ℓ + 2s ) ≡ −(ω0 )(ℓ + 2s )⎢ z z z z z 

⎢⎣ (ζnℓ and ω0 are in units of rad/s) 
* evaluate matrix elements in both basis sets 
* look at energy levels and their Zeeman tuning rate in high field γB ≫ ζ nℓ limit z 

* and in low field γB ≪ ζ nℓ limit z 

lower case for 1e−  atom angular momenta 

upper case for many - e− angular momenta 

⎧⎪
⎨
⎪⎩ 

Notation: 

two different CSCOs 

a) 

b) 

Helect , J2 , Jz ,L
2 ,S2 

nJLSM J 

Helect , L2 ,Lz ,S
2 ,Sz 

nLM L SM S 

coupled basis 
(can't be factored) 

uncoupled basis 
(explicitly factored) 

⎫ 
⎪
⎪
⎬ 
⎪ 
⎪
⎭ 

recall tensor product 
states and “entanglement” 
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5.73 Lecture #25 25 - 4 

2. Coupled and Uncoupled Basis Sets have the same dimension 

! ! !
COUPLED J = L + S L − S ≤ J ≤ L + S 

each J has 2J + 1 MJ ’s J S 

L 

Dimension 
J = L + S 2(L + S) +1 Every allowed value of J

every term in this sum has contributes 2L + 1 to sum. HowL + S −1 2(L + S −1) +12L + 1 and there are 2S + 1 many allowed values of J are 
of them. The second term L + S − 2 2(L + S − 2) +1 there? 
shows that the S,S–1,…–S …… !!!!
terms in sum all cancel. If L > S, there are 2S + 1

) +1 terms in sum.L − S 2( L − S 

(2S + 1)(2L + 1) + 2 S[ + (S −1) + !(−S)] = (2S + 1)(2L + 1) 
= 0 ⇑� 

total dimension 
of basis set for 

specified L and S 
UNCOUPLED LML SMS!"#!"# total dimension (2L + 1)(2S +1)  again

2L +1 2 S+ 1 

There is a term by term correspondence between the 2 
basis sets ∴ a transformation must exist: 

Coupled basis state in terms of uncoupled basis states: 

JLSMJ = Σ a LML 
SM = M − MS J LMLML ! #"##$ 

constraint 

Trade J, MJ for ML, MS, but MJ = ML + MS. 

4
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5.73 Lecture #25 25 - 5 
Going in the opposite direction: express uncoupled basis state in terms of coupled 
basis states: 

L+S 

OR LML 
SMS 

= ∑ bJ JLS M = M + MJ L S! #"##$J= L−S 
constraint 

HSO ζ nℓ3. Matrix elements of = ℓ ⋅s 
" 

A. Coupled Representation 

J2 L and S commute becauseJ = L + S = L2 + S2 + 2L ⋅ S 
they operate in different 
vector spaces

J2 − L2 − S2 

L ⋅ S = (useful trick!)
2 

L ⋅S JLSM J = (!2 2)[J(J +1) − L(L +1) − S(S +1)]δJ J′ δL L′ δS S′ δMJ ′ MJ 
J ′L′S′MJ ′ 

an entirely diagonal matrix. 

B. Uncoupled Representation: work out all of the matrix elements. 

L · S = LzSz + ½(L+S– + L–S+): because L+S– + L–S+ = (Lx +iLy)(Sx – iSy) 

diagonal off-diagonal  + (L  – iL )(S  + iS ) = 2(L S  + L S )x y x y x x y y 

L ⋅S LMLSMS = !2δL L′ δS S′ ×L′ML ′S′MS ′ 

!!! 

can’t change L can’t change S 
⎧ 1 1/2 

⎨⎡⎣MLMSδ δ ⎤⎦ + ⎡⎣L(L +1) − ML ′ ML ⎤⎦ ×ML ′ ML MS ′ MS⎩ 2 

⎡⎣S (S +1) − MS ′MS ⎤⎦
1/2 δML ′ ML ±1 ×δMS ′ MS ∓1} ΔML = −ΔMS = 0, ±1 

Non-Lecture notes for evaluated matrices 

S =1 / 2, L = 0,1,2 2S, 2P, 2D states 
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5.73 Lecture #25 25 - 6 
NONLECTURE for HSO : COUPLED BASIS2S +1LJ 

!SO 2S1/2 HCOUPLED = 
2 
ζns (0) = 0 a 1 × 1 matrix with matrix element = 0 

0 
0 
0 

⎞ 
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠ 

0 
0 

⎜ ⎟1 

⎜
⎜
⎜
⎜
⎜
⎜
⎜ 
⎝ 

!SO =2P1/2 & 3/2 HCOUPLED 2 
ζnp 

⎛−2 0 0 0 0 
J = 1/2 (2 × 2)0 −2 0 0 0 

0 0 1 0 0 
0 0 0 1 0 

J = 3/2 (4 × 4)
0 0 0 0 1 
0 0 0 0 0 

L J J( J +1) −L(L +1) −S(S +1) = 

( 2 S1/2 ) 0 1/2 3/4 0 −3/4 0 

( 2 P1/2 ) 1 1/2 3/4 −2 −3/4 −2 

( 2 P3/2 ) 1 3/2 15/4 −2 −3/4 +1 

( 2 D3/2 ) 2 3/2 15/4 −6 −3/4 −3 

( 2 D5/2 ) 2 5/2 35/4 −6 −3/4 +2 
J = 3 / 2 

−3 0 0 0 0 0 0 0 0 0⎛ ⎞ 
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟ 

!SO 2D 3 and 
2
5 HCOUPLED = 

2 
ζnd ⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜ 

0 −3 0 0 0 0 0 0 0 0 

0 

0 

0 

0 

0 

0 

0 

2 

2 
0 0 −3 0 0 0 0 0 0 (4 × 4) 

(6 × 6) 

0 0 0 −3 0 0 0 0 0 

0 0 0 0 2 0 0 0 0 

0 0 0 0 0 2 0 0 0 

0 0 0 0 0 0 2 0 0 

0 0 0 0 0 0 0 2 0 

0 0 0 0 0 0 0 0 2 
⎟⎠ 

J = 5 / 2 
center of gravity rule: trace of matrix = 0 
(obeyed for all scalar terms in H) 

revised 17 August 2020 10:19 AM 
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5.73 Lecture #25 25 - 7 

MJ 

5/2
3/2
3/2
1/2
1/2 

−1/2 

−1/2 

−3/2 

−3/2 

−5/2 

2S+1L NONLECTURE for HSO : UNCOUPLED BASIS 
2S SO = !ζ (1 2 ⋅0) = (0) (1×1) HUNCOUPLED ns 
2 P SO = !ζ ×HUNCOUPLED np 

MJ ML 
MS 

3/2 1 1/2 1/2 0 0 0 0 0 

−1/2 2−1/2 1/2 1 −1/2 0 0 0 0 

2−1/2 1/2 0 1/2 0 0 0 0 0 

2−1/2 −1/2 0 −1/2 0 0 0 0 0 

2−1/2 −1/2 −1 1/2 0 0 0 −1/2 0 

−3/2 −1 −1/2 0 0 0 0 0 1/2 

Each box along main diagonal is for one value of MJ = ML + MS. 

2 D SO HUNCOUPLED = !ζ nd × 

ML 
MS 

2 1/2 1 0 0 0 0 0 0 0 0 0 

2 −1/2 0 −1 1 0 0 0 0 0 0 0 

1 1/2 0 1 1/2 0 0 0 0 0 0 0 

1 −1/2 0 0 0 −1/2 (3/2)1/2 0 0 0 0 0 

0 1/2 0 0 0 (3/2)1/2 0 0 0 0 0 0 

0 −1/2 0 0 0 0 0 0 (3/2)1/2 0 0 0 

−1 1/2 0 0 0 0 0 (3/2)1/2 −1/2 0 0 0 

−1 −1/2 0 0 0 0 0 0 0 1/2 1 0 

−2 1/2 0 0 0 0 0 0 0 1 −1 0 

−2 −1/2 0 0 0 0 0 0 0 0 0 1 

End of Non-Lecture 
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5.73 Lecture #25 25 - 8 

HZeeman4. Matrix Elements of = −γBz (L z + 2Sz ) 

A. Very easy in uncoupled representation 

Zeeman L z + 2Sz LMLSMSHuncoupled = −γ Bz L′ML ′S′MS ′ 

= −γ Bz!(ML + 2MS )δL L′ δS S′ δML ′ ML 
δMS ′ MS 

strictly diagonal 

B. Coupled representation 

L + 2S = J + Sz z z z 

easy hard — no clue! 

can’t evaluate matrix elements in coupled representation 
without a new trick, discussed in item #5 

5. If we wish to work in coupled representation, because it diagonalizes HSO, we 
need to find the transformation between coupled and uncoupled representations. 

JLSMJ = Σ LMLSMS = MJ − MLaMLML 
lengthy procedure: use J± = L± + S± and orthogonality 

Always start with an extreme ML, MS basis state, where we are 
assured of a trivial 1 to 1 correspondence between basis sets: 

ML = L, MS = S, MJ = M L + MS = L + S, J = L + S 

J = L + S LSMJ = L + S = LM L = L SM S = S 

coupled uncoupled 

Now the fun begins … 
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5.73 Lecture #25 25 - 9 

Apply J– to both sides of the equation: 

!MJ!"J# "# 
J− | L + S LS L + S〉 = (L− + S− ) LML = L SMS = S 

(⎡ ]1/2
L + S)( L + S + 1) 1/ 2 

L + S LS L + S − 1 = [L(L + 1) − L(L −1)⎤ 

]1/2[ ( ( )+ S S + 1) − S S − 1 LLSS −1 

LL −1SS 
−( L + S)( L + S − 1)⎥⎦ 
⎢
⎣ 

Thus we have derived an equality between one coupled basis state and a 
specific linear combination of two uncoupled basis states. 

There is only one other orthogonal linear combination that belongs to the 
same value of ML + MS = MJ: it must belong to the L + S −1 LS L + S −1 
basis state. lowered J 

NONLECTURE 
Work this out for 2P using J– = L– + S– 

JLSMJ = 3 / 2 1 1/ 2 3 / 2 = LMLSMS = 1 1 1 / 2 1/ 2 \ 

1 0 1 / 2 1/ 2 + 1 1 1 / 2 −1 / 2 
JLSMJ − 1 = 

21/2 

31/2 

now use orthogonality: 
+ 21/21 0 1 / 2 1/ 2 1 1 1 / 2 −1 / 2 

J − 1LSMJ − 1 = 1 / 2 1 1/ 2 1 / 2 = 
− 

31/ 2 . 

Continue laddering down to get all four J = 3/2 and all two J = 1/2 basis 
states. 

1/2 1/2
⎛ 2⎞ ⎛1⎞ 

3 / 2 1 1 /2 −1 / 2 = 1 0 1 /2 −1 / 2 + 1 −1 1/ 2 1 /2 
⎝⎜ 3⎠⎟ ⎝⎜ 3⎠⎟ 

3 / 2 1 1 /2 −3 / 2 = 1 −1 1 /2 −1 / 2 
1/2 1/2 

−
⎛ 1⎞ ⎛ 2⎞1 /2 1 1/ 2 1 /2 = 1 0 1/ 2 −1 /2 + 1 −1 1/ 2 1 /2 
⎝⎜ 3⎠⎟ ⎝⎜ 3⎠⎟ 

You work out the transformation for 2D! 

Next step will be to evaluate HSO + HZeeman in both coupled and 
uncoupled basis sets and look for limiting behavior. 
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