H^{SO} + H^{Zeeman} Coupled vs. Uncoupled Basis Sets

Last time:

matrices for \mathbf{J}_2 , \mathbf{J}_+ , \mathbf{J}_- , \mathbf{J}_z , \mathbf{J}_x , \mathbf{J}_y in $|j\mathbf{m}_j\rangle$ basis for $\mathbf{J} = 0$, $\frac{1}{2}$, 1 Pauli spin $\frac{1}{2}$ matrices arbitrary 2×2 matrix $M = a_0 I + \vec{a}_1 \cdot \vec{\sigma}$ decomposed as scalar plus vector. When **M** is $\boldsymbol{\rho} \rightarrow$ visualization via fictitious vector in fictitious B-field.

When **M** is a term in $\mathbf{H} \rightarrow$ idea that arbitrary operator can be decomposed as a sum of the terms that behave like components of J = 0, J = 1, J = 2... This leads to <u>spherical tensor algebra</u>.

types of operators

 $\begin{array}{c} aJ \\ \vec{q} \\ J_1 \cdot J_2 \end{array} \left[\begin{array}{c} e.g. \text{ magnetic moment } (a \text{ is a known constant or a function of r}) \\ how to evaluate matrix elements (e.g. Stark Effect) \\ e.g. Spin-Orbit \end{array} \right]$

Special simplification of Trace (AH)

For example

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathbf{H} = \begin{pmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{pmatrix}$$
$$\mathbf{AH} = \begin{pmatrix} H_{21} & H_{22} & H_{23} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \qquad \text{simpler}$$
$$\mathbf{AH} = H_{21}$$

 A_{12} picks out only H_{21} , A_{21} picks out only H_{12} .

Extreme labor saving trick!

TODAY:

- 1. $\mathbf{H}^{SO} + \mathbf{H}^{Zeeman}$ as illustrative
- 2. Dimension of two basis sets, $| JLSM_J \rangle$ and $| LM_LSM_S \rangle$, is the same
- 3. matrix elements of \mathbf{H}^{SO} in both basis sets
- 4. matrix elements of $\mathbf{H}^{\text{Zeeman}}$ in both basis sets
- 5. ladder operators and orthogonality for transformation between basis sets. Necessary to be able to evaluate matrix elements of $\mathbf{H}^{\text{Zeeman}}$ in "coupled basis". Why? Because coupled basis set does not explicitly reveal the effects of \mathbf{L}_z or \mathbf{S}_z .

Nos. 3, 4 and 5 will be repeated in Lecture #26.

Suppose we have 2 kinds of angular momenta, which can be coupled to each other to form a total angular momentum.

 \vec{L} orbital \vec{S} spin $\vec{J} = \vec{L} + \vec{S}$ total

The components of L,S, and J each follow the standard angular momentum definition commutation rule, but, in addition

$$\begin{bmatrix} \vec{\mathbf{L}}, \vec{\mathbf{S}} \end{bmatrix} = 0 , \qquad \begin{bmatrix} \mathbf{J}_i, \mathbf{L}_j \end{bmatrix} = i\hbar \sum_k \varepsilon_{ijk} \mathbf{L}_k \\ \begin{bmatrix} \mathbf{J}_i, \mathbf{S}_j \end{bmatrix} = i\hbar \sum_k \varepsilon_{ijk} \mathbf{S}_k.$$

These commutation rules specify that L and S act like vectors with respect to J but as scalars with respect to each other.

 $\vec{\mathbf{J}} \rightarrow \left| jm_{j} \right\rangle$ $\vec{\mathbf{L}} \rightarrow \left| \ell m_{\ell} \right\rangle$ $\vec{\mathbf{S}} \rightarrow \left| sm_{s} \right\rangle$

Coupled $|j\ell sm_i\rangle$ vs. uncoupled $|\ell m_\ell\rangle |sm_s\rangle$ representations.

- * matrix elements of certain operators are more convenient in one basis set than the other
- * a unitary transformation between basis sets must exist
- * limiting cases for energy level patterns

 (and Zeeman tuning rates assignment and intensities for transitions into eigenstates)
 determination of key parameters,

structure, and dynamics revised 17 August 2020 10:19 AM

25 - 3

I. $H^{SO} = \xi(r)\ell \cdot s \equiv \frac{\zeta_{n\ell}}{\hbar}\ell \cdot s$ $= ch \text{ will each give a factor of }\hbar$ $H^{Zeeman} = -\gamma B_z(\ell_z + 2s_z) \equiv -(\omega_0)(\ell_z + 2s_z)$ $(\zeta_{n\ell} \text{ and } \omega_0 \text{ are in units of rad/s})$

* evaluate matrix elements in both basis sets

* look at energy levels and their Zeeman tuning rate in *high field* $|\gamma B_z| \gg \zeta_{n\ell}$ limit * and in *low field* $|\gamma B_z| \ll \zeta_{n\ell}$ limit

Notation: $\begin{cases} \text{lower case for } 1e^- \text{ atom angular momenta} \\ \text{upper case for many - } e^- \text{ angular momenta} \end{cases}$

two different CSCOs

a)
$$H^{\text{elect}}, J^2, J_z, L^2, S^2$$
 coupled basis
 $|nJLSM_J\rangle$ (can't be factored)
b) $H^{\text{elect}}, L^2, L_z, S^2, S_z$ uncoupled basis
 $|nLM_L\rangle|SM_S\rangle$ (explicitly factored)
recall tensor product
states and "entanglement"

2. Coupled and Uncoupled Basis Sets have the same dimension

 $\vec{J} = \vec{L} + \vec{S} \qquad |L - S| \le J \le L + S$ COUPLED each J has $2J + 1 M_{I}$'s

every term in this sum has 2L + 1 and there are 2S + 1of them. The second term shows that the S,S-1,...-S terms in sum all cancel. $J = L + S - 2 \qquad 2(L+S)+1$ $L+S-2 \qquad 2(L+S-2)+1$ \dots $L-S| \qquad 2(|L-S|)+1$

Every allowed value of J contributes 2L + 1 to sum. How many allowed values of J are there?

If L > S, there are 2S + 1terms in sum.

$$(2S+1)(2L+1) + 2[S+(S-1)+\dots(-S)] = (2S+1)(2L+1)$$

$$= 0$$

$$(2S+1)(2L+1) + 2[S+(S-1)+\dots(-S)] = (2S+1)(2L+1)$$

total dimension of basis set for specified L and S

UNCOUPLED

 $\underbrace{LM_L}_{2L+1}\underbrace{SM_S}_{2S+1}$

total dimension (2L+1)(2S+1) again

There is a term by term correspondence between the 2 basis sets ∴ a transformation must exist:

Coupled basis state in terms of uncoupled basis states:

$$\left| JLSM_{J} \right\rangle = \sum_{M_{L}} a_{M_{L}} \left| LM_{L} \right\rangle \left| S\underbrace{M_{S} = M_{J} - M_{L}}_{\text{constraint}} \right\rangle$$

Trade J, M_J for M_L , M_S , but $M_J = M_L + M_S$.

Going in the opposite direction: express uncoupled basis state in terms of coupled basis states:

OR
$$|LM_L\rangle|SM_S\rangle = \sum_{J=|L-S|}^{L+S} b_J |JLSM_J = M_L + M_S\rangle$$

- 3. Matrix elements of $H^{SO} = \frac{S_{n\ell}}{\hbar} \ell \cdot s$
 - A. Coupled Representation

$$\vec{J} = \vec{L} + \vec{S}$$
 $J^2 = L^2 + S^2 + 2L \cdot S$

L and S commute because they operate in different vector spaces

$$\mathbf{L} \cdot \mathbf{S} = \frac{\mathbf{J}^2 - \mathbf{L}^2 - \mathbf{S}^2}{2}$$
 (useful trick!)

 $\left\langle J'L'S'M'_{J} \middle| \mathbf{L} \cdot \mathbf{S} \middle| JLSM_{J} \right\rangle = \left(\hbar^{2}/2 \right) \left[J(J+1) - L(L+1) - S(S+1) \right] \delta_{J'J} \delta_{L'L} \delta_{S'S} \delta_{M'_{J}M_{J}}$

an entirely diagonal matrix.

B. <u>Uncoupled Representation</u>: work out all of the matrix elements.

$$\mathbf{L} \cdot \mathbf{S} = \mathbf{L}_{z}\mathbf{S}_{z} + \frac{1}{2}(\mathbf{L}_{+}\mathbf{S}_{-} + \mathbf{L}_{-}\mathbf{S}_{+}): \text{ because } \mathbf{L}_{+}\mathbf{S}_{-} + \mathbf{L}_{-}\mathbf{S}_{+} = (\mathbf{L}_{x} + i\mathbf{L}_{y})(\mathbf{S}_{x} - i\mathbf{S}_{y})$$

$$\operatorname{diagonal} \quad \operatorname{off-diagonal} + (\mathbf{L}_{x} - i\mathbf{L}_{y})(\mathbf{S}_{x} + i\mathbf{S}_{y}) = 2(\mathbf{L}_{x}\mathbf{S}_{x} + \mathbf{L}_{y}\mathbf{S}_{y})$$

$$\left\langle L'M'_{L}S'M'_{S} \left| \mathbf{L} \cdot \mathbf{S} \right| LM_{L}SM_{S} \right\rangle = \hbar^{2}\delta_{L'L}\delta_{S'S} \times \left[\mathbf{M}_{L}M_{S}\delta_{M'_{L}M_{L}}\delta_{M'_{S}M_{S}} \right] + \frac{1}{2} \left[L(L+1) - M'_{L}M_{L} \right]^{1/2} \times \left[S(S+1) - M'_{S}M_{S} \right]^{1/2}\delta_{M'_{L}M_{L}\pm 1} \times \delta_{M'_{S}M_{S}\mp 1} \right\} \qquad \Delta M_{L} = -\Delta M_{S} = 0, \pm 1$$

Non-Lecture notes for evaluated matrices

$$S = 1/2$$
, $L = 0,1,2$ ${}^{2}S, {}^{2}P, {}^{2}D$ states

25 - 6

${}^{2S+1}L_{J}$			NONL	ECTURE f	or H S	⁰ : C	OUF	PLE	D B	AS	SIS					
² S _{1/2}	$\mathrm{H}^{\mathrm{SO}}_{\mathrm{COUP}}$	LED	$=\frac{\hbar}{2}\zeta_{ns}$	(0) = 0	a 1×1 matrix with matrix element = 0											
${}^{2}P_{1/2 \& 3/2}$ H_{COU}^{SO}		$_{\rm IPLED} = \frac{1}{2}$,	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$			0 0 0	$ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} $			J	J = 1/2		(2 × 2)	
					$\left(\begin{array}{c} 0\\ 0\\ 0\end{array}\right)$	0 0 0	000000000000000000000000000000000000000	1 0 0	1 0		0 1	J	= ;	3/2	(4 × 4)	
		L	J	J(J+1)) –	L(L	+1)	-5	'(<i>S</i>	5+	1)		=		
	$\left({}^{2}S_{1/2} \right)$	0	1/2	3/4		0			_	-3	/4			0		
	$\left({}^{2}P_{1/2} \right)$	1	1/2	3/4		—	2		_	-3	/4			-2		
	$\left({}^{2}P_{3/2} \right)$	1	3/2	15/4		-2			_	-3	/4	/4 +				
	$\left({}^{2}D_{3/2} \right)$	2	3/2	15/4		—	6		_	-3	/4			-3		
	$\left({}^{2}D_{5/2} \right)$	2	5/2	35/4		—	6		_	-3	/4		-	+2		
						J = 3	/ 2									
^{2}D	$\frac{3}{2}$ and $\frac{5}{2}$	H ^{SO}	LED	$=\frac{\hbar}{2}\zeta_{nd}$	$\begin{pmatrix} -3\\ 0 \end{pmatrix}$	0 -3	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0		
	2 2				0	0	-3	0	0	0	0	0	0	0	(4×4)	
					$\frac{0}{0}$	0	0	-3	0	0	0	0	0	$\frac{0}{0}$		
						0	0	0	2	2	0	0	0	0		
						0	0	0	0	2 0	2	0	0	0	(6×6)	
					0	0	0	0	0	0	0	2	0	0		
					0	0	0	0	0	0	0	0	2	0		
					(0	0	0	0	0	0	0	0	$\frac{0}{2}$	2)		
											J =	- 57	4			

center of gravity rule: trace of matrix = 0 (obeyed for all *scalar* terms in **H**)

Each box along main diagonal is for one value of $M_J = M_L + M_S$.

$$^{2}D$$
 $H_{\rm UNCOUPLED}^{\rm SO} = \hbar \zeta_{nd} \times$

M_{J}	$M_{_L}$	M_{s}										
5/2	2	1/2	1	0	0	0	0	0	0	0	0	0
3/2	2	-1/2	0	-1	1	0	0	0	0	0	0	0
3/2	1	1/2	0	1	1/2	0	0	0	0	0	0	0
1/2	1	-1/2	0	0	0	-1/2	$(3/2)^{1/2}$	0	0	0	0	0
1/2	0	1/2	0	0	0	$(3/2)^{1/2}$	0	0	0	0	0	0
-1/2	0	-1/2	0	0	0	0	0	0	$(3/2)^{1/2}$	0	0	0
-1/2	-1	1/2	0	0	0	0	0	$(3/2)^{1/2}$	-1/2	0	0	0
-3/2	-1	-1/2	0	0	0	0	0	0	0	1/2	1	0
-3/2	-2	1/2	0	0	0	0	0	0	0	1	-1	0
-5/2	-2	-1/2	0	0	0	0	0	0	0	0	0	1
				-								

End of Non-Lecture

- 4. Matrix Elements of $\mathbf{H}^{\text{Zeeman}} = -\gamma B_z (\mathbf{L}_z + 2\mathbf{S}_z)$
 - A. Very easy in uncoupled representation

$$\begin{aligned} \mathbf{H}_{\text{uncoupled}}^{\text{Zeeman}} &= -\gamma B_z \left\langle L'M_L'S'M_S' \middle| \mathbf{L}_z + 2\mathbf{S}_z \middle| LM_LSM_S \right\rangle \\ &= -\gamma B_z \hbar \big(M_L + 2M_S \big) \delta_{L'L} \delta_{S'S} \delta_{M_L'M_L} \delta_{M_S'M_S} \end{aligned}$$

strictly diagonal

B. Coupled representation

 $\mathbf{L}_{z} + 2\mathbf{S}_{z} = \underbrace{\mathbf{J}_{z}}_{\text{easy}} + \underbrace{\mathbf{S}_{z}}_{\text{hard} - \text{no clue}!}$

can't evaluate matrix elements in coupled representation without a new trick, discussed in item #5

5. If we wish to work in *coupled* representation, because it diagonalizes \mathbf{H}^{SO} , we need to find the transformation between coupled and uncoupled representations.

$$|JLSM_{J}\rangle = \sum_{M_{L}} a_{M_{L}} |LM_{L}SM_{S} = M_{J} - M_{L}\rangle$$

lengthy procedure: use $J_{\pm} = L_{\pm} + S_{\pm}$ and orthogonality
Always start with an extreme M_{L} , M_{S} basis state, where we are

assured of a trivial 1 to 1 correspondence between basis sets:

$$M_{L} = L, \quad M_{S} = S, \quad M_{J} = M_{L} + M_{S} = L + S, \quad J = L + S$$
$$|J = L + S \quad LSM_{J} = L + S \rangle = |LM_{L} = L \quad SM_{S} = S \rangle$$

coupled uncoupled

Now the fun begins ...

Apply \mathbf{J}_{-} to both sides of the equation:

$$\mathbf{J}_{-} \mid \overrightarrow{\mathbf{L} + S} \quad LS \quad \overrightarrow{\mathbf{L} + S} \rangle = (\mathbf{L}_{-} + \mathbf{S}_{-}) \mid LM_{\mathrm{L}} = L \quad SM_{\mathrm{S}} = S \rangle$$

$$\begin{bmatrix} (L+S)(L+S+1) \\ -(L+S)(L+S-1) \end{bmatrix}^{1/2} \mid L+S \quad LS \quad L+S-1 \rangle = \begin{bmatrix} L(L+1) - L(L-1) \end{bmatrix}^{1/2} \mid LL - 1SS \rangle$$

$$+ \begin{bmatrix} S(S+1) - S(S-1) \end{bmatrix}^{1/2} \mid LLSS - 1 \rangle$$

Thus we have derived an equality between one coupled basis state and a specific linear combination of two uncoupled basis states.

There is only one other orthogonal linear combination that belongs to the same value of $M_L + M_S = M_J$: it must belong to the $\lfloor L + S - 1 \rfloor LS L + S - 1 \rangle$ basis state.

NONLECTURE Work this out for ²P using $J^- = L^- + S^-$

$$|JLSM_{J}\rangle = |3/2 \ 1 \ 1/2 \ 3/2\rangle = |LM_{L}SM_{S}\rangle = |1 \ 1 \ 1/2 \ 1/2\rangle |_{JLSM_{J}} = \frac{2^{1/2}|1 \ 0 \ 1/2 \ 1/2\rangle + |1 \ 1 \ 1/2 \ -1/2\rangle}{3^{1/2}}$$

now use orthogonality:

$$|J - 1LSM_J - 1\rangle = |1/2 \ 1 \ 1/2 \ 1/2\rangle = \frac{-|1 \ 0 \ 1/2 \ 1/2\rangle + 2^{1/2}|1 \ 1 \ 1/2 \ -1/2\rangle}{3^{1/2}}$$

Continue laddering down to get all four J = 3/2 and all two J = 1/2 basis states.

$$\begin{vmatrix} 3/2 & 1 & 1/2 & -1/2 \end{pmatrix} = \left(\frac{2}{3}\right)^{1/2} \begin{vmatrix} 1 & 0 & 1/2 & -1/2 \end{pmatrix} + \left(\frac{1}{3}\right)^{1/2} \begin{vmatrix} 1 & -1 & 1/2 & 1/2 \end{pmatrix} \\ \begin{vmatrix} 3/2 & 1 & 1/2 & -3/2 \end{pmatrix} = \begin{vmatrix} 1 & -1 & 1/2 & -1/2 \end{pmatrix} \\ \begin{vmatrix} 1/2 & 1 & 1/2 & 1/2 \end{pmatrix} = -\left(\frac{1}{3}\right)^{1/2} \begin{vmatrix} 1 & 0 & 1/2 & -1/2 \end{pmatrix} + \left(\frac{2}{3}\right)^{1/2} \begin{vmatrix} 1 & -1 & 1/2 & 1/2 \end{pmatrix} \end{vmatrix}$$

You work out the transformation for ²D!

Next step will be to evaluate $\mathbf{H}^{SO} + \mathbf{H}^{Zeeman}$ in both coupled and uncoupled basis sets and look for limiting behavior.

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.