$H^{\mathrm{SO}}+\mathrm{H}^{\text {Zeeman }}$

Coupled vs. Uncoupled Basis Sets

Last time:
matrices for $\mathbf{J}_{2}, \mathbf{J}_{+}, \mathbf{J}_{-}, \mathbf{J}_{z}, \mathbf{J}_{x}, \mathbf{J}_{y}$ in $\left|\mathrm{jm} \mathrm{m}_{\mathrm{j}}\right\rangle$ basis for $\mathrm{J}=0,1 / 2,1$ Pauli spin $1 / 2$ matrices arbitrary 2×2 matrix $\quad M=a_{0} I+\vec{a}_{1} \cdot \vec{\sigma}$ decomposed as scalar plus vector.

When \mathbf{M} is $\boldsymbol{\rho} \rightarrow$ visualization via fictitious vector in fictitious B-field.
When \mathbf{M} is a term in $\mathbf{H} \rightarrow$ idea that arbitrary operator can be decomposed as a sum of the terms that behave like components of $\mathrm{J}=0$, $\mathrm{J}=1, \mathrm{~J}=2 \ldots$ This leads to spherical tensor algebra.
types of operators
\(\left.\begin{array}{r}a \mathrm{~J}

\overrightarrow{\mathrm{q}}

\mathrm{J}_{1} \cdot \mathrm{~J}_{2}\end{array}\right] \quad\)| e.g. magnetic moment (a is a known constant or a function of r) |
| :--- |
| how to evaluate matrix elements (e.g. Stark Effect) |
| e.g. Spin-Orbit |

Special simplification of Trace (AH)
For example

$$
\begin{aligned}
\mathbf{A} & =\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \mathbf{H}=\left(\begin{array}{lll}
H_{11} & H_{12} & H_{13} \\
H_{21} & H_{22} & H_{23} \\
H_{31} & H_{32} & H_{33}
\end{array}\right) \\
\mathbf{A H} & =\left(\begin{array}{ccc}
H_{21} & H_{22} & H_{23} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$\operatorname{Trace}(\mathbf{A H})=H_{21}$ extreme simplification!
\mathbf{A}_{12} picks out only $\mathbf{H}_{21}, \mathbf{A}_{21}$ picks out only \mathbf{H}_{12}.
Extreme labor saving trick!

TODAY:

1. $\quad \mathbf{H}^{\mathrm{SO}}+\mathbf{H}^{\text {Zeeman }}$ as illustrative
2. Dimension of two basis sets, $\left|\mathrm{JLSM}_{\mathrm{J}}\right\rangle$ and $\left|\mathrm{LM}_{\mathrm{L}} \mathrm{SM}_{\mathrm{S}}\right\rangle$, is the same
3. matrix elements of \mathbf{H}^{SO} in both basis sets
4. matrix elements of $\mathbf{H}^{\text {Zeeman }}$ in both basis sets
5. ladder operators and orthogonality for transformation between basis sets. Necessary to be able to evaluate matrix elements of $\mathbf{H}^{\text {Zeeman }}$ in "coupled basis". Why? Because coupled basis set does not explicitly reveal the effects of L_{z} or S_{z}.

Nos. 3, 4 and 5 will be repeated in Lecture \#26.
Suppose we have 2 kinds of angular momenta, which can be coupled to each other to form a total angular momentum.

The components of \mathbf{L}, \mathbf{S}, and \mathbf{J} each follow the standard angular momentum definition commutation rule, but, in addition

$$
\begin{aligned}
{[\overrightarrow{\mathrm{L}}, \overrightarrow{\mathrm{~S}}]=0 \quad } & {\left[\mathrm{~J}_{i}, \mathrm{~L}_{j}\right]=i \hbar \sum_{k} \varepsilon_{i j k} \mathrm{~L}_{k} } \\
& {\left[\mathrm{~J}_{i}, \mathrm{~S}_{j}\right]=i \hbar \sum_{k} \varepsilon_{i j k} \mathrm{~S}_{k} . }
\end{aligned}
$$

These commutation rules specify that \mathbf{L} and \mathbf{S} act like vectors with respect to \boldsymbol{J} but as scalars with respect to each other.

$$
\begin{aligned}
& \overrightarrow{\mathbf{J}} \rightarrow\left|j m_{j}\right\rangle \\
& \overrightarrow{\mathbf{L}} \rightarrow\left|\ell m_{\ell}\right\rangle \\
& \overrightarrow{\mathbf{S}} \rightarrow\left|s m_{s}\right\rangle
\end{aligned}
$$

Coupled $\left|j \ell s m_{j}\right\rangle$ vs. uncoupled $\left|\ell m_{\ell}\right\rangle\left|s m_{s}\right\rangle$ representations.

* matrix elements of certain operators are more convenient in one basis set than the other
* a unitary transformation between basis sets must exist
* limiting cases for energy level patterns (and Zeeman tuning rates assignment and intensities for transitions into eigenstates) structure, and dynamics

each will give a factor of \hbar

$$
\mathrm{H}^{\text {Zeeman }}=-\gamma B_{z}\left(\ell_{z}+2 \mathrm{~S}_{z}\right) \equiv-\left(\omega_{0}\right)\left(\ell_{z}+2 \mathrm{~S}_{z}\right)
$$

($\zeta_{n \ell}$ and ω_{0} are in units of $\mathrm{rad} / \mathrm{s}$)

* evaluate matrix elements in both basis sets
* look at energy levels and their Zeeman tuning rate in high field $\left|\gamma B_{z}\right| \gg \zeta_{n \ell}$ limit
* and in low field $\left|\gamma B_{z}\right| \ll \zeta_{n \ell}$ limit

Notation: $\left\{\begin{array}{l}\text { lower case for } 1 \mathrm{e}^{-} \text {atom angular momenta } \\ \text { upper case for many }-\mathrm{e}^{-} \text {angular momenta }\end{array}\right.$
two different CSCOs
a)

$\mathrm{H}^{\text {elect }}, \mathrm{J}^{2}, \mathrm{~J}_{z}, \mathrm{~L}^{2}, \mathrm{~S}^{2}$	coupled basis
$\left\|n J L S M_{\mathrm{J}}\right\rangle$	(can't be factored)

recall tensor product
states and "entanglement"
2. Coupled and Uncoupled Basis Sets have the same dimension

COUPLED

$$
\vec{J}=\vec{L}+\vec{S} \quad|L-S| \leq J \leq L+S
$$ each J has $2 J+1 \quad M_{J}$'s

UNCOUPLED $\underbrace{L M_{L}}_{2 L+1} \underbrace{S M_{S}}_{2 S+1}$ total dimension $(2 L+1)(2 S+1)$ again

There is a term by term correspondence between the 2 basis sets \therefore a transformation must exist:

Coupled basis state in terms of uncoupled basis states:

$$
\left|J L S M_{J}\right\rangle=\sum_{M_{L}} a_{M_{L}}\left|L M_{L}\right\rangle|\underbrace{M_{S}=M_{J}-M_{L}}_{\text {constraint }}\rangle
$$

Trade J, M_{J} for M_{L}, M_{S}, but $M_{J}=M_{L}+M_{S}$.

Going in the opposite direction: express uncoupled basis state in terms of coupled basis states:

$$
\text { OR }\left|L M_{L}\right\rangle\left|S M_{S}\right\rangle=\sum_{J=|L-S|}^{L+S} b_{J}|J L S \underbrace{M_{J}=M_{L}+M_{S}}_{\text {constraint }}\rangle
$$

3. Matrix elements of $\mathrm{H}^{\mathrm{so}}=\frac{\zeta_{n \mathrm{n}}}{\hbar} \ell \cdot \mathrm{s}$

A. Coupled Representation

$$
\begin{aligned}
& \overrightarrow{\mathbf{J}}=\overrightarrow{\mathbf{L}}+\overrightarrow{\mathbf{S}} \quad \mathbf{J}^{2}=\mathbf{L}^{2}+\mathbf{S}^{2}+2 \mathbf{L} \cdot \mathbf{S} \begin{array}{l}
\mathrm{L} \text { and } \mathbf{S} \text { commute because } \\
\text { they operate in different } \\
\text { vector spaces }
\end{array} \\
& \mathbf{L} \cdot \mathbf{S}=\frac{\mathbf{J}^{2}-\mathbf{L}^{2}-\mathbf{S}^{2}}{2} \begin{array}{l}
\text { (useful trick!) }
\end{array} \\
&\left\langle J^{\prime} L^{\prime} S^{\prime} M_{J}^{\prime}\right| \mathbf{L} \cdot \mathbf{S}\left|J L S M_{J}\right\rangle=\left(\hbar^{2} / 2\right)[J(J+1)-L(L+1)-S(S+1)] \delta_{J^{\prime} J} \delta_{L^{\prime} L} \boldsymbol{\delta}_{S^{\prime} S} \boldsymbol{\delta}_{M_{j}^{\prime} M_{J}}
\end{aligned}
$$

an entirely diagonal matrix.
B. Uncoupled Representation: work out all of the matrix elements.
$\mathbf{L} \cdot \mathbf{S}=\mathbf{L}_{z} \mathbf{S}_{\mathbf{z}}+1 / 2\left(\mathbf{L}_{+} \mathbf{S}_{-}+\mathbf{L}_{-} \mathbf{S}_{+}\right)$: because $\mathbf{L}_{+} \mathbf{S}_{-}+\mathbf{L}_{-} \mathbf{S}_{+}=\left(\mathbf{L}_{x}+i \mathbf{L}_{y}\right)\left(\mathbf{S}_{x}-i \mathbf{S}_{y}\right)$

$$
\text { diagonal off-diagonal } \quad+\left(\mathbf{L}_{x}-i \mathbf{L}_{y}\right)\left(\mathbf{S}_{x}+i \mathbf{S}_{y}\right)=2\left(\mathbf{L}_{x} \mathbf{S}_{x}+\mathbf{L}_{y} \mathbf{S}_{y}\right)
$$

$$
\begin{aligned}
& \left.\left[S(S+1)-M_{S}^{\prime} M_{S}\right]^{1 / 2} \delta_{M_{L}^{\prime} M_{L} \pm 1} \times \delta_{M_{S}^{\prime} M_{S} \mp 1}\right\} \quad \Delta M_{L}=-\Delta M_{S}=0, \pm 1
\end{aligned}
$$

Non-Lecture notes for evaluated matrices

$$
S=1 / 2, \quad L=0,1,2 \quad \quad{ }^{2} S,{ }^{2} P,{ }^{2} D \text { states }
$$

$$
\begin{aligned}
& { }^{2 S+1} L_{J}
\end{aligned}
$$

$$
\begin{aligned}
& \text { NONLECTURE for } \mathbf{H}^{\text {So }} \text { : COUPLED BASIS } \\
& L \quad J \quad J(J+1)-L(L+1)-S(S+1)= \\
& \left(\begin{array}{llllll}
{ }^{2} S_{1 / 2}
\end{array}\right) \quad 0 \quad 1 / 2 \quad 3 / 4 \quad 0 \quad-3 / 4 \quad 0 \\
& \left(\begin{array}{lllllll}
{ }^{2} P_{1 / 2}
\end{array}\right) 1 \begin{array}{llll}
1 / 2 & 3 / 4 & -2 & -3 / 4 \\
\hline
\end{array} \\
& \left(\begin{array}{lllllll}
\left.{ }^{2} P_{3 / 2}\right) & 1 & 3 / 2 & 15 / 4 & -2 & -3 / 4 & +1
\end{array}\right. \\
& \left(\begin{array}{lllllll}
{ }^{2} D_{3 / 2}
\end{array}\right) 2 \begin{array}{lllll}
& 3 / 2 & 15 / 4 & -6 & -3 / 4
\end{array} \quad-3 \\
& \left(\begin{array}{llllll}
{ }^{2} D_{5 / 2}
\end{array}\right) 25 / 2 \quad 35 / 4 \quad-6 \quad-3 / 4 \quad+2 \\
& J=3 / 2 \\
& { }^{2} D_{\frac{3}{2} \text { and } \frac{5}{2}} \quad \mathbf{H}_{\text {COUPLED }}^{\text {SO }} \quad=\frac{\hbar}{2} \zeta_{\text {nd }} \quad\left(\begin{array}{cccc|cccccc}
-3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -3 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array} \quad(4 \times 4)\right.
\end{aligned}
$$

center of gravity rule: trace of matrix $=0$
(obeyed for all scalar terms in \mathbf{H})
${ }^{2 S+1} L \quad$ NONLECTURE for H^{SO} : UNCOUPLED BASIS
${ }^{2} S \quad \mathrm{H}_{\text {UNCOUPLED }}^{\text {SO }} \quad=\hbar \zeta_{\text {ns }}(1 / 2 \cdot 0)=(0)$
${ }^{2} P \quad \mathrm{H}_{\text {UNCOUPLED }}^{\text {SO }} \quad=\hbar \zeta_{n p} \times$

M_{J}	M_{L}	M_{S}						
$3 / 2$	1	$1 / 2$	$1 / 2$	0	0	0	0	0
$1 / 2$	1	$-1 / 2$	0	$-1 / 2$	$2^{-1 / 2}$	0	0	0
$1 / 2$	0	$1 / 2$	0	$2^{-1 / 2}$	0	0	0	0
$-1 / 2$	0	$-1 / 2$	0	0	0	0	$2^{-1 / 2}$	0
$-1 / 2$	-1	$1 / 2$	0	0	0	$2^{-1 / 2}$	$-1 / 2$	0
$-3 / 2$	-1	$-1 / 2$	0	0	0	0	0	$1 / 2$

Each box along main diagonal is for one value of $M_{J}=M_{L}+M_{S}$.
${ }^{2} D \quad \mathrm{H}_{\text {UNCOUPLED }}^{\text {sO }} \quad=\hbar \zeta_{n d} \times$

M_{J}	M_{L}	M_{S}										
$5 / 2$	2	$1 / 2$	1	0	0	0	0	0	0	0	0	0
$3 / 2$	2	$-1 / 2$	0	-1	1	0	0	0	0	0	0	0
$3 / 2$	1	$1 / 2$	0	1	$1 / 2$	0	0	0	0	0	0	0
$1 / 2$	1	$-1 / 2$	0	0	0	$-1 / 2$	$(3 / 2)^{1 / 2}$	0	0	0	0	0
$1 / 2$	0	$1 / 2$	0	0	0	$(3 / 2)^{1 / 2}$	0	0	0	0	0	0
$-1 / 2$	0	$-1 / 2$	0	0	0	0	0	0	$(3 / 2)^{1 / 2}$	0	0	0
$-1 / 2$	-1	$1 / 2$	0	0	0	0	0	$(3 / 2)^{1 / 2}$	$-1 / 2$	0	0	0
$-3 / 2$	-1	$-1 / 2$	0	0	0	0	0	0	0	$1 / 2$	1	0
$-3 / 2$	-2	$1 / 2$	0	0	0	0	0	0	0	1	-1	0
$-5 / 2$	-2	$-1 / 2$	0	0	0	0	0	0	0	0	0	1

End of Non-Lecture
4. Matrix Elements of $\mathbf{H}^{\text {Zeeman }}=-\gamma B_{z}\left(\mathbf{L}_{z}+2 \mathbf{S}_{z}\right)$
A. Very easy in uncoupled representation

$$
\begin{aligned}
\mathrm{H}_{\text {uncoupled }}^{\text {Zeeman }} & =-\gamma B_{z}\left\langle L^{\prime} M_{L}^{\prime} S^{\prime} M_{S}^{\prime}\right| \mathrm{L}_{z}+2 \mathrm{~S}_{z}\left|L M_{L} S M_{S}\right\rangle \\
& =-\gamma B_{z} \hbar\left(M_{L}+2 M_{S}\right) \delta_{L^{\prime} L} \delta_{S^{\prime} S} \delta_{M_{L}^{\prime} M_{L}} \delta_{M_{S}^{\prime} M_{S}}
\end{aligned}
$$

strictly diagonal
B. Coupled representation

$$
\mathbf{L}_{z}+2 \mathbf{S}_{z}=\underbrace{\mathbf{J}_{z}}_{\text {easy }}+\underbrace{\mathbf{S}_{z}}_{\text {hard - no clue! }}
$$

can't evaluate matrix elements in coupled representation without a new trick, discussed in item \#5
5. If we wish to work in coupled representation, because it diagonalizes \mathbf{H}^{SO}, we need to find the transformation between coupled and uncoupled representations.

$$
\left|\mathrm{JLSM}_{\mathrm{J}}\right\rangle=\sum_{\mathrm{M}_{\mathrm{L}}}^{\Sigma} \mathrm{a}_{\mathrm{M}_{\mathrm{L}}}\left|\mathrm{LM}_{\mathrm{L}} \mathrm{SM}_{\mathrm{S}}=\mathrm{M}_{\mathrm{J}}-\mathrm{M}_{\mathrm{L}}\right\rangle
$$

lengthy procedure: use $\mathrm{J}_{ \pm}=\mathrm{L}_{ \pm}+\mathrm{S}_{ \pm} \quad$ and orthogonality
Always start with an extreme $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ basis state, where we are assured of a trivial 1 to 1 correspondence between basis sets:

$$
\begin{gathered}
M_{L}=L, \quad M_{S}=S, \quad M_{J}=M_{L}+M_{S}=L+S, \quad J=L+S \\
\left|J=L+S \quad L S M_{J}=L+S\right\rangle=\left|L M_{L}=L \quad S M_{S}=S\right\rangle \\
\text { coupled } \quad \text { uncoupled }
\end{gathered}
$$

Now the fun begins ...

Apply \mathbf{J}_{-}to both sides of the equation:

$$
\begin{array}{rl}
\mathbf{J}_{-}|\overbrace{\mathrm{L}+\mathrm{S}}^{\mathrm{S}} \mathrm{LS} \overbrace{\mathrm{~L}+\mathrm{S}\rangle}^{\mathrm{M}_{\mathrm{J}}}\rangle & =\left(\mathbf{L}_{-}+\mathbf{S}_{-}\right)\left|\mathrm{LM}_{\mathrm{L}}=\mathrm{L} \mathrm{SM}_{\mathrm{S}}=\mathrm{S}\right\rangle \\
{\left.\left[\begin{array}{l}
(L+S)(L+S+1) \\
-(L+S)(L+S-1)
\end{array}\right]^{1 / 2} \right\rvert\, L+S} & L S \\
L+S-1\rangle & =[L(L+1)-L(L-1)]^{1 / 2}|L L-1 S S\rangle \\
& +[S(S+1)-S(S-1)]^{1 / 2}|L L S S-1\rangle
\end{array}
$$

Thus we have derived an equality between one coupled basis state and a specific linear combination of two uncoupled basis states.

There is only one other orthogonal linear combination that belongs to the same value of $\mathrm{M}_{\mathrm{L}}+\mathrm{M}_{\mathrm{S}}=\mathrm{M}_{\mathrm{J}}$: it must belong to the $|L+S-1 L S L+S-1\rangle$ basis state. lowered J
NONLECTURE
Work this out for ${ }^{2} \mathrm{P}$ using $\mathbf{J}^{-}=\mathbf{L}^{-}+\mathbf{S}^{-}$

$$
\begin{aligned}
& \left.\left|\mathrm{JLSM}_{\mathrm{J}}\right\rangle=\left|\begin{array}{llll}
3 / 2 & 1 & 1 / 2 & 3 / 2
\end{array}\right\rangle=\left|\mathrm{LM}_{\mathrm{L}} \mathrm{SM}_{\mathrm{S}}\right\rangle \overline{\mathrm{L}} \mathrm{1} \begin{array}{lll}
1 & 1 / 2 & 1 / 2
\end{array}\right\rangle \\
& \left|\mathrm{JLSM}_{\mathrm{J}}-1\right\rangle=\frac{2^{1 / 2}\left|\begin{array}{lllll}
1 & 0 & 1 / 2 & 1 / 2
\end{array}\right\rangle+\left\lvert\, \begin{array}{llll}
1 & 1 & 1 / 2 & -1 / 2
\end{array}\right.}{3^{1 / 2}}
\end{aligned}
$$

now use orthogonality:

$$
\left.\left|J-1 \mathrm{LSM}_{\mathrm{J}}-1\right\rangle=\left|\begin{array}{llll}
1 / 2 & 1 & 1 / 2 & 1 / 2
\end{array}\right\rangle=\frac{\left.-\left|\begin{array}{llll}
1 & 0 & 1 / 2 & 1 / 2
\end{array}\right\rangle+2^{1 / 2} \right\rvert\, 1}{1} \begin{array}{llll}
1 / 2 & -1 / 2
\end{array}\right] .
$$

Continue laddering down to get all four $\mathrm{J}=3 / 2$ and all two $\mathrm{J}=1 / 2$ basis states.

$$
\begin{aligned}
& \left|\begin{array}{llll}
3 / 2 & 1 & 1 / 2 & -1 / 2
\end{array}\right\rangle=\left(\frac{2}{3}\right)^{1 / 2}\left|\begin{array}{llll}
1 & 0 & 1 / 2 & -1 / 2
\end{array}\right\rangle+\left(\frac{1}{3}\right)^{1 / 2}\left|\begin{array}{llll}
1 & -1 & 1 / 2 & 1 / 2
\end{array}\right\rangle \\
& \left|\begin{array}{llll}
3 / 2 & 1 & 1 / 2 & -3 / 2
\end{array}\right\rangle=\left|\begin{array}{llll}
1 & -1 & 1 / 2 & -1 / 2
\end{array}\right\rangle \\
& \left|\begin{array}{llll}
1 / 2 & 1 & 1 / 2 & 1 / 2
\end{array}\right\rangle=-\left(\frac{1}{3}\right)^{1 / 2}\left|\begin{array}{llll}
1 & 0 & 1 / 2 & -1 / 2
\end{array}\right\rangle+\left(\frac{2}{3}\right)^{1 / 2}\left|\begin{array}{llll}
1 & -1 & 1 / 2 & 1 / 2
\end{array}\right\rangle
\end{aligned}
$$

You work out the transformation for ${ }^{2} \mathrm{D}$!

Next step will be to evaluate $\mathbf{H}^{\mathrm{SO}}+\mathbf{H}^{\text {Zeeman }}$ in both coupled and uncoupled basis sets and look for limiting behavior.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

