Name

5.73

Quiz 10

1. Multiply the following pairs of matrices:

A.
$$(0 \ 1 \ 0 \ 0) \otimes \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} =$$

B. $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \otimes (0 \ 1 \ 0 \ 0) =$
C. $\begin{pmatrix} 1 \ 0 \ 0 \\ 0 \ 1 \ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 6 \ 3 \ 5 \\ 2 \ 9 \ 7 \\ 4 \ 4 \ 2 \end{pmatrix} =$

2.

C.
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 9 & 7 \\ 4 & 4 & 2 \end{bmatrix}^{=}$$

 $\langle i| = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$
 $\langle i|i \rangle = \begin{bmatrix} a \\ b \\ c \\ d \end{pmatrix}$
 $\langle i|i \rangle = |a|^{2} + |b|^{2} + |c|^{2} + |d|^{2}$
Normalize $\begin{pmatrix} 6 \\ 2i \\ 5 \\ 1 \end{pmatrix}$

3. Consider the Hermitian matrix:

$$\mathbf{A} = \left(\begin{array}{rrr} 4 & 1 & 1 \\ 1 & 7 & -2 \\ 1 & -2 & 7 \end{array} \right)$$

Is $\begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$ an eigenvector of **A**? If so, what is its eigenvalue?

		$\left(\begin{array}{c}2\end{array}\right)$		$\left(\begin{array}{c} 0 \end{array}\right)$)
4.	Find a non-normalized vector that is orthogonal to both	-1	and	1	
		(-1)		1)

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.