Name

5.73

Quiz 10

1. Multiply the following pairs of matrices:
A. $\quad\left(\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right) \otimes\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)=$
B. $\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right) \otimes\left(\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right)=$
C. $\quad\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}6 & 3 & 5 \\ 2 & 9 & 7 \\ 4 & 4 & 2\end{array}\right)=$
2.

$$
\begin{aligned}
& \langle i|=\left(\begin{array}{llll}
a^{*} & b^{*} & c^{*} & d^{*}
\end{array}\right) \\
& |i\rangle=\left(\begin{array}{c}
a \\
b \\
c \\
d
\end{array}\right) \\
& \langle i \mid i\rangle=|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}
\end{aligned}
$$

Normalize $\left(\begin{array}{c}6 \\ 2 i \\ 5 \\ 1\end{array}\right)$
3. Consider the Hermitian matrix:

$$
\mathbf{A}=\left(\begin{array}{ccc}
4 & 1 & 1 \\
1 & 7 & -2 \\
1 & -2 & 7
\end{array}\right)
$$

Is $\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)$ an eigenvector of \mathbf{A} ? If so, what is its eigenvalue?
4. Find a non-normalized vector that is orthogonal to both $\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)$ and $\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

