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Supplement #1 to Lecture #27 

Angular Momentum Eigenvalues (from lecture notes by Professor Dud-
ley Herschbach) 

Consider Hermitian Joperator any ∼ whose components satisfy the following 

commutation rules 

[Jx, Jy] = i}Jz 

and the cyclic permutations thereof. Equivalently, the rules may be written 

as 

J J× ∼∼ }i J= ∼ 

or as X 
[J`, Jm] = i} ε`mnJn 

n 

where 

ε`mn = +1 if `, m, n are in cyclic order 

= −1 if `, m, n are in anti-cyclic order 

= 0 if any two of `, m, n are the same. 

Seek to find eigenvalues λ for J2 and µ for Jz such that 

J2 |λµi = λ |λµi 

Jz |λµi = µ |λµi . 

Since J2 and Jz are Hermitian, λ and µ are real, and |λµi are the simultaneous 
eigenvectors which render J2 and Jz simultaneously diagonal. 

First show λ ≥ µ2 

Proof: hλµ |J2 − J2| λµi = λ − µ2 
z 

But 

J2 J2 
z zJ2 − J2 = J2 + J2 

z x y + − 
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X 
λµ J2 λµ = hλµ |Jx| λ0 µ 0i hλ0 µ 0 |Jx| λµix 

λ0µ 
| {z }0 

λµ Jx 
† λ0 µ 0 and Jx 

† = Jx X 
= |hλµ |Jx| λ0 µ 0i|2 → 0 and similarly for J2 term.y 

0λ0µ 

So 

λµ Jx 
2 + Jy 

2 λµ = λ − µ 2 ≥ 0 Q. E. D. 

Since µ2 ≥ 0 this also implies λ ≥ 0. 

It is convenient to use the non-Hermitian operators 

J± = Jx ± iJy Note J+ 
† = J−, J−

† = J+. 

These satisfy 

[Jz, J±] = ±}J± since [Jz, Jx ± iJy] = i}Jy ± i(−i}Jx) 

= }(Jx ± iJy) = }J±. 

Apply this to |λµi and find 

(JzJ± − J±Jz) |λµi = ±}J± |λµi 

or 

Jz(J± |λµi) = (J±Jz ± }J±) |λµi 

= (µ ± })(J± |λµi) since Jz |λµi = µ |λµi . 

Thus J± |λµi is an eigenvector of Jz with eigenvalue µ±}. Hence J+ “raises” 

the eigenvalue of µ to µ + } and J− “lowers” the eigenvalue of µ to µ − }. 
Now note 

[J2, J±] = 0 

since J2 commutes with its components Jx and Jy. Thus 

J2(J± |λµi) = J± J
2 |λµi = λ(J± |λµi).| {z } 
λ |λµi 
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Thus J± |λµi remains an eigenvector of J2 with the same eigenvalue λ as 

|λµi. 
By repeated application of J+ we can get eigenvectors with Jz eigenvalues of 

µ + }, µ + 2}, . . . but the same eigenvalue λ of J2 . Since µ2 ≥ λ, for a given 

λ there must be some highest value of µ, call it µh, such that J+ |λµhi = 0 
rather than generating a new eigenvector of still higher Jz–eigenvalue. Simi-

larly, repeated application of J− gives µ − }, µ − 2}, . . . but would eventually 

violate µ2 ≤ λ unless there is some lowest value of µ, call it µ`, such that 

J− |λµ`i = 0. 

Now we use these conditions to show µn = −µ`. Consider applying J− to 

J+ |λµhi = 0. Note the identity: 

J−J+ = (Jx − iJy)(Jx + iJy) 

= Jx 
2 + Jy 

2 + i[Jx, Jy] 

= J2 − Jz 
2 − }Jz. 

Thus 

J−J+ |λµi = (λ − µ 2 − }µh) |λµhi = 0.h 

Taking the matrix element with hλµh| we find 

λ − µ 2 − }µh = 0.h 

Similarly, 

J+J− |λµ`i = (J2 − J2 + }Jz) |λµ`iz 

leads to 

λ − µ 2 + }µ` = 0.` 

Hence 

λ = µh(µh + }) = µ`(µ` − })| {z } 

Two solutions: µh = −µ` 
or µh = µ` − } but this second solution 
must be rejected since µh was assumed to 
be larger than µ`. 
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Now we can conclude also that µh = µ` + n} where n is some integer. This 

follows since, if we start from |λµ`i and apply J+ repeatedly, we obtain the 

sequence of eigenvectors: 

λµ`i, J+ |λµ`i, J2 |λµ`i, . . . Jn |λµ`i = |λµni| {z } | {z } |+ {z } |+ {z } 
µ` µ`+} µ`+2} µ`+n}=µ} 

Thus 

µh = −µ` = µ` + n} 

or 
n n 

µ` = − }, µh = + }
2 2 

where n = 0, 1, 2, . . . is some integer (related to the value of λ). 

For convenience, we write 

µ = m}, m = −j, −j + 1, · · · + j 

n 1 3where j = , with j = 0, , 1, , 2, . . .
2 2 2 

Then eigenvalues of Jz are −j}, (−j + 1)}, . . . j}| {z } 
2j+1 different values 

Eigenvalues of J2 are given by 

λ = µh(µh + }) = µ`(µ` − }) = j}(j} + }) = −j}(−j} − }) 

λ = j(j + 1)}2 

Also, it is convenient to label the eigenvectors by j, m rather than λ, µ, so 

J2 |jmi = j(j + 1)}2 |jmi 

jz |jmi = m} |jmi . 

Comments 
We derived the above eigenvalues using only the commutation property and 

the Hermitian property. We find that both integer and half-integer values of 

j and m are allowed. 
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Actually, we have solved a much more general problem than that posed by 

the orbital angular momentum of a particle. Thus, for several particles in 

the same central force field, the total angular momentum, X 
(n)L∼ , 

n 

also satisfies these relations, even if the particles interact with each other. 

Spin angular momenta likewise satisfy these relations. 

For orbital angular L ×momentum, = q p
∼∼∼ must require, in addition, that the 

its original under rotation by 2π Such rotationsystem returns to state a a. 

→ → →takes and ×p p q q so q p q
∼∼∼∼∼∼∼ 
× p
∼ 
and hence the eigenvectors of L2 

and Lz must be unchanged: 

−i2πJz /} |jmi = e −i2πm |jmie 

−i2πm e = +1 if m is integer and hence integer eigenvalues are acceptable for 

L2 −i2πm , Lz. Half-integer values give e = −1 and hence are not acceptable 

for orbital angular momentum. 

Half-integers do apply for spin angular momenta, which are not constructed 

from any q
∼ 
×p
∼ 
and thus can take on both integer and half-integer eigenvalues. 

This illustrates the power of operator derivation. A more general case would 

not have been included if we had used wave mechanical methods and repre-

sentations by differential operators. 

We have shown that, for a fixed j value, 

J+ |jmi = am |j, m + 1i and J− |jmi = bm |j, m − 1i , 

where am and bm are constants, possibly complex numbers. The proportion-

ality constants are simply related to each other, since ⎛ ⎞* +∗ ∗ Z ⎜ ⎟
ψ ∗ am = hj, m + 1|J+|jmi = jm |J+ 

† | j, m + 1 = ⎝ J−ψj,m+1 dτ⎠|{z} jm | {z } 
J− bm+1ψj,m 

= b ∗ 
m+1 
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Now, to evaluate am, consider the identity 

J−J+ = J2 − Jz 
2 − }Jz. 

Apply this to |jmi, then you have 

J−J+ |jmi = amJ− |j, m + 1i = ambm+1 |jmi = |am|2 |jmi 

J2 − J2 − }Jz |jmi = (j(j + 1) − m 2 − m)}2 |jmi .z 

Hence 

am = [j(j + 1) − m(m + 1)]1/2}e iφm | {z } 
(j − m)(j + m + 1) ← another common way of writing it, 

where eiφm is an arbitrary phase factor. The usual convention is to take 

φ = 0; this fixes the relative phases of the vectors |jmi having different 
values of m but the same j. 

The only non-vanishing matrix elements of J+ and J− are: 

hj, m + 1|J+|jmi = hj, m|J−|j, m + 1i = [j(j + 1) − m(m + 1)]1/2}
6 
always the lower times the 
higher of the two m–values in 
the matrix element Or you can write this alternatively as 

hj0 ,m 0|J+|jmi = [j(j + 1) − m(m + 1)]1/2}δj0,j δm ,m+10 

0hj0 ,m 0|J−|jmi = [j(j + 1) − m(m − 1)]1/2}δj0,j δm ,m−1 
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List of non-zero elements: 

“add the bigger m to j andjm|J2|jm = j(j + 1)}2 

subtract the smaller” 
hjm|Jz|jmi = m} z ? }| { 
hj, m ± 1|J±|jmi = [j(j + 1) − m(m ± 1)]1/2} = [(j ± m + 1)(j   m)]1/2} 

1 1 
Jx = (J+ + J−), Jy = (J+ − J−)

2 2i 
1 hj, m ± 1|Jx|jmi = [j(j + 1) − m(m ± 1)]1/2}
2 
1 hj, m ± 1|Jy|jmi = ± [j(j + 1) − m(m ± 1)]1/2}
2i 

We can summarize elements of Jx, Jy, Jz by: 

jm|J |jm ˆ∼ = zm} 
1 

j, m ± 1|J |jm = (x̂ ± iŷ) [j(j + 1) − m(m ± 1)]1/2}.∼ 2 

Comment 
Thus we have found all matrix elements of J with eigenvectors |jmi of J2, Jz. 

These eigenvectors and their properties are important, since any time we have 

a system of particles isolated in free space, their total angular momentum 

J2, Jz commutes with the total Hamiltonian, no matter what kind of forces 

hold the system together (central or not). That is, the total angular momen-

tum of an isolated system is a constant of the motion in quantum mechanics, 

just as in classical mechanics. 

Hence it is important to be able to take matrix elements of other operators 

in the angular momentum states which characterize an isolated system. 

Examples 

j = 0 : J+ = (0) J− = (0) Jz = (0) J2 = (0) 
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�������� 
1 0 1 0 0 1 0 3 0 

j = : J+ = J− = Jz = 2 J2 = 4
3−12 0 0 1 0 0 0

2 4 

j = 1: ⎛ √ ⎞⎛⎞ 
0 2 0 1 0 0√⎝ ⎠ ⎝ ⎠0 0 0J+ = Jz =0 0 2 
0 0 0 0 0 −1 

⎞⎛⎞⎛ 
0 0 0 2 0 0√⎝ ⎠ ⎝ ⎠J2 =2 0 0√ 0 2 0J− = 
0 2 0 0 0 2 

3j = : ⎛ √ ⎞⎛⎞2 
30 3 0 0 0 0 0
2⎜⎜⎝ 

0 0 2 0√ 
0 0 0 3 

⎟⎟⎠ Jz = 
⎜⎜⎝ 

⎟⎟⎠ 

10 0 0
2J+ = −10 0 0

2 
−30 0 0 0 0 0 0 

2 ⎞⎛⎞⎛ 
0 0 0 0 15 0 0 0√ 4⎜⎜⎝ 

⎟⎟⎠ 
⎜⎜⎝ 

⎟⎟⎠ 

153 0 0 0 
0 2 0 0√ 

0 0 0 
J2 = 4J− = 150 0 0

4 
0 0 3 0 0 0 0 15 

4 
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MOMENTA AS DISPLACEMENT OPERATORS: 

Geometrical Meaning of Commutation Rules 

Linear Momentum 
Let |x1i be an eigenvector of the position operator X with eigenvalue x1, i.e. 

X |x1i = x1 |x1i . 

Consider the new state vector defined by e−iapx/} |x1i; we might ask whether 

it is also an eigenvector of X. To find out, evaluate � � � � 
X e −iapx/} |x1i = e −iapx/} (X |x1i)+ X, e−iapx/} |x1i| {z } | {z } 

x1|x1i 6 

Now . . 

. � � 
X, e−iapx/}

d 
= i}

dpx 

.� . �−iapx/}.e . 
. 

. 
.. 

. 
. . .−iapx/}= ae 

Thus � � −iapx/} |x1i −iapx/}(X + a) |x1i = e −iapx/}(x1 + a) |x1iX e = e � � −iapx/} |x1i= (x1 + a) e . 

Hence e−iapx/} |x1i is indeed an eigenvector of X with eigenvalue x1+a instead 

of x1. The unitary operator e−iapx/} formed from the linear momentum oper-

ator px acts as a displacement operator for x position coordinates. Similarly, 

py generates displacements of the y coordinate and pz of the z coordinate. 

It is a geometrical fact that linear displacements of a point commute. For 

example: 

9
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x2y2t y first move along x
6b6 t - t by a, then along yx1y1−ibpy /} a by b|x2y2i = e e −iapx/} |x1y1i ⇒ - x 

at - tx2y2y 
b6 t reverse the 

−iapx/} x1y1 order−ibpy /} |x1y1i ⇒= e e - x 

.
. 

The same result is obtained by applying displacements in either order. This 

agrees with [px, py] = 0 (and {px, py} = 0). 

Angular momentum 

2 

Lx, Ly, Lz operators generate angular displacements or rotations; e.g., 

−iφLx/}e 

gives a rotation by angle φ about the x–axis, etc. However, geometrical 

2 

rotations about different axes do not commute. For example, 6z 

consider a state representing a particle on the z–axis, |z0i. Now .. t 

−i π −i π 
?t 

. . . 
. 
.. 

Ly /}{z } 
Lx/} |z0i{z } 

⇒ particle on −y axise| e|
rotation by π/2 

- y 
rotation by π/2 
about y–axis about x–axis �x 

6
z 

But t .. 
. 

R. 

. 

. 

.
.
.
. 
.2

−i π 
e| {z 

Lx/}} 2
−i π 
e| 

Ly /} |z0i ⇒ particle on +x axis{z } 
- yt 

rotation by π/2 rotation by π/2 
about x–axis about y–axis �x 

The results of these two rotations taken in opposite order differ by a rotation 

about the z–axis. Thus, because the rotations about different axes don’t 

commute, we must expect the angular momentum operators, which generate 

these rotations, not to commute with each other. Indeed, 

[Lx, Ly] = i}Lz 

10
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corresponds to the above example, in which the commutator of rotations 

about the x and y axes depends on a z–axis rotation. 

Rotational Transformation Properties and Selection Rules 
The various observables of a dynamical system can be classified according 

to their transformation properties under rotations. This is of great value in 

determining the matrix elements of the corresponding operators and, in par-

ticular, leads to selection rules which limit the number of non–zero matrxix 

elements. 
J·∼φi ∼ 
/} 
an operator O is trans-Under action of the rotation operator U 

O∼ 

A scalar Soperator ∼ 

= e 

formed according to 

UO= ∼ ∼ 
0 † 

∼U 

is one which is invariant to this transformation (e.g., the 

. 

†

∼ −US SU [U, S or ∼∼ 

USU S= ∼∼∼∼ 

∼ 

Hamiltonian of isolated system). Hence, for scalar operator an a 

∼∼ 

or 

= 0 ] = 0. 

U J· ∼∼ 

Thus, a scalar commutes with every rotation operator. Consider, in partic-

ular, an infinitesimal rotation dφ, for which 
∼ 

i 
= 1 + dφ .

} ∼ 

of J [S, J or, ∼∼∼ 

Since the direction of dφ is arbitrary, S∼ 

] = 0. As shown below, this property leads to the selection rules 

Δj = 0, Δm = 0 

must commute with each component 
∼ 

A Vvector operator ∼ 

for the non-zero matrix elements of a scalar operator. 

is one with three components, Vx, Vy, Vz which transform 

V J V J· · ∼∼∼∼ 

under rotations like the coordinates of a point. For an infinitesimal rotation, � � � � 
i i0 1 + dφ 1 − dφ= .
} }∼ ∼ 

11
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0Now that if the position is obtained fromnote vector r r∼ 

small angle dφ about axis in the direction of the dφvectora an 
∼ 

×r = r r∼ 

∼ 

∼∼ 

by rotation through 

, we have, to 

. 
. 

.. 

.

. 

.

. 

.
.
.
. 

0 
∼ 

���������� 

∼ 

- dφ 
rXXXXXXXXXXzr 

:dφ 
∼ 

first order in dφ, 
0 + dφ 

∼ 

and so 
0V∼ = V +∼ dφ × V .∼∼ 

Hence, if terms in (dφ)2 are neglected, we obtain 

i h� � � �i 
dφ × V = ∼ dφ · J∼ −V∼ ∼V dφ ∼ · J . 

is arbitrary, this relation gives the of Vcommutator ∼ 

of Jponent ∼ 

}∼ ∼ ∼ 

Since dφ with any com-
∼ 

. Thus, if dφ = εẑ  is a rotation about the z–axis, we find 
∼ 

−V V∼∼ 

i � � 
ε(ˆ V×� z ∼ ) = ε� Jz Jz} 

or � � 
, V∼ }−i (ˆ V×= z ∼ ] = −i}(−Vy) = i}VyJz ) or [Jz, Vx 

±0 and 1 for all of Vcomponents= ∼ 

which satisfies the above rules (e.g., positionoperator r∼ 

the angular Jmomentump, ∼ 

[Jz, Vy] = −i}(−Vx) = −i}Vx 

[Jz, Vz] = 0 

etc. 

∼ 

In this way we obtain a set of nine commutation rules: 

[Jx, Vx] = 0 [Jy, Vx] = −i}Vz [Jz, Vx] = −i}Vy 

[Jx, Vy] = i}Vz [Jy, Vy] = 0 [Jz, Vy] = −i}Vy 

[Jx, Vz] = −i}Vy [Jy, Vz] = i}Vx [Jz, Vz] = 0 

The selection rules for non-zero matrix elements of a vector operator, i.e. an 

, linear momentum 

itself) are shown below to be given by 

Δj 

12




 � 
 �

Lecture #27 Supplement #1 Page 27S(1)-13 

with 

Δm = 0 for Vz 

Δm = ±1 for V± = Vx ± iVy. 

Scalar Operators, S1 

Defined by [S∼, J∼] = 0, for all three components of J∼. Corollary is [S, J2] = 0 

and [S, Jz] = 0. If we take the matrix elements, we have 

j0 m 0|[S, J2]|jm = 0 

= j0 m 0|SJ2 − J2S|jm 

= }2 hj0 m 0|Sj(j + 1) − j0(j0 + 1)S|jmi 

= }2[j(j + 1) − j0(j0 + 1)] hj0 m 0|S|jmi . 

Also, 

hj0 m 0|[S, Jz]|jmi = 0 

= hj0 m 0|SJz − JzS|jmi 

= } hj0 m 0|Sm − m 0S|jmi 

= }(m − m 0) hj0 m 0|S|jmi . 

Therefore, hj0m0|S|jmi must vanish unless j = j0 and m0 = m0 . “Selection 

rules” for non-zero elements are: Δj = 0 and Δm = 0. 

Let sjm ≡ hjm|S|jmi denote the non-vanishing element. Since this is the 
only non-zero matrix element, |jmi is an eigenvector of S, i.e. S |jmi = sjm |jmi. 
Now we can show that the eigenvalues of the scalar operator S don’t depend 

on m. Since S commutes with J± = Jx ± iJy, we have 

S (J+ |jmi) = J+S |jmi = sjm (J+ |jmi) . 

But J+ |jmi is proportional to |j, m + 1i and still has some eigenvalue sjm 

of S. We could continue this with J+
2 → m + 2, . . . and with J− → m − 1, 

1These notes were prepared by Professor Dudley Herschbach of Harvard University 
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J2 → m−2, etc., and would get the same eigenvalue sjm of S for all m states− 

of a given j. Hence we would obtain 

hj0 m 0|S|jmi = hjkSkji δjj0 δmm0 

where hjkSkji is called a reduced matrix element, a number that does not 

depend on m. 

The above equation only describes the properties of S which are associated 

with its scalar character. In general, the states of the system will depend 

upon other quantum numbers in addition to j and m. If these are denoted 

collectively by α, the scalar operator need not be diagonal in α, so the general 

statement becomes 

0hα0j0 m 0|S|αjmi = hα0jkSkαji δjj0 δmm

for 

[S, J ] = 0.∼ 

Vector Operators, V 

Definition: A vector operator V with respect to the angular momentum J∼ ∼ 

is any set of three operators Vx, Vy, Vz that satisfy the following com-

mutation rules: X 
[Ji, Vj ] = i} εijkVk εijk = 1, ijk cyclic 

k 

= −1, ijk anti-cyclic 

= 0, any two subscripts the same 

This is shorthand for 

[Jx, Vx] = 0 [Jy, Vx] = −i}Vz [Jz, Vx] = i}Vy 

[Jx, Vy] = i}Vz [Jy, Vy] = 0 [Jz, Vy] = −i}Vx 

[Jx, Vz] = −i}Vy [Jy, Vz] = i}Vx [Jz, Vz] = 0. 

It is convenient to use 
1 1 

V± = Vx ± iVy Vx = (V+ + V−); Vy = (V+ − V−). 
2 2i 

14
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Selection Rules for m 

Consider the commutators involving Jz, take matrix elements of the commu-

tators: 

a) [Jz, Vz] = 0 

hj0m0|JzVz − VzJz|jmi = hj0m0|m0}Vz − Vzm}|jmi = }(m0−m) hj0m0|Vz|jmi 

Thus hj0m0|Vz|jmi = 0 unless m0 = m, Δm = 0 

b) [Jz, V+] = [Jz, Vx + iVy] = i}Vy + i(−i}Vx) = }V+ 

hj0m0|JzV+ − V+Jz|jmi = } hj0m0|V+|jmi. 

or 

}(m0 − m − 1) hj0m0|V+|jmi = 0 

hj0m0|V+|jmi = 0 unless m0 − m = +1, Δm = +1 

c) Similarly, [Jz, V−] = −}V− and 

hj0m0|V−|jmi = 0 unless m0 − m = −1, Δm = −1 

Selection Rules for j 
To find the selection rules for j, we want to examine commutators of V with∼ 

J∼ 
2 . For this, some vector identities are useful. First we show 

(1) J × V + V × J = 2i}V .∼ ∼ ∼ ∼ ∼ 

This relation is another way to define a vector operator. It states that, 

because of the non-commuting algebra of quantum mechanics, J × V =6∼ ∼ 

−V × J as would hold for ordinary vectors. ∼ ∼ 

15
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0.0.1 Proof: 

X 
(J V V J× ×+ ∼∼∼∼ 

re-label via j ↔ k)i = (εijkJj Vk + εijkVj Jk) ..66. 6 . . Xj,k 
. . . . 

Then use εijk = −εijk 

= εijk(Jj Vk − VkJj ) 

= 

j,kX X 
εijk[Jj , Vk] = i} εijkεjk`V` 

j,k jk` 

using the definition 
of a vector operator 

Note εijkεjk` = εijkε`jk as a cyclic permutation of subscripts leaves εijk un-

changed. 

Then 

X factor 2 appears because both odd-odd 
ε ε 2δ and permutations give= even-even aijk `jk i` 

contributionj,k 

(J V J×+ ∼∼ 

So X 
∼ )i = 2i} δi`V` = 2i}Vi Q.E.D. 

−[J J J V× × ∼∼∼ 

` 

Now we show 

∼(2) ). 

} −i ( J V V J× ×+= ∼∼ 

2[J , V ] , V ]= j ji 

∼ 

2[J 

∼ 

Proof: 

X 

iX 
= {Ji[Ji, Vj ] + [Ji, Vj ]Ji}

i ⎧ ⎫ ⎨ ⎬X 
[J2, Vj ] = i} Ji εijk Vk + εijk VkJi⎩ |{z} |{z} ⎭ 

i,k 

)j Q.E.D. 

V× ∼ 

2 }, V ] i (V= ∼ ∼ 

16
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However, can’t this selection rules Vyet commutator to getwe use on ∼ 

It is convenient to define the operator 

are) and is if Vvector operator a ∼ 

1 −K (V J J V× × ∼ 

2 }[J , V ] 2i K= ∼ 

∼∼ 

∼ 

∼ 

∼ 

∼ ≡ ). 
2 

and J∼ 

Then Equation (2) states 

This is Hermitian (since V∼ is. 

. (1) 

, since 

the matrix elements of the Kcommutator ∼ 

relation those of Vto ∼ 

would seem to bear no simple 

. We will find that selection rules can be obtained from 

This be by examining further the properties of Kcan proven ∼ 

}− −J J K (2i K J K× × ×= ∼ 

}− −J J V ) V J i V× × ×= ∼ 

∼ 

2 } −[J ,K] i (K J J K× ×= ∼ 

}J 2i K× = ∼ 

}−2J K 2i K×= ∼

∼ 

identity involving the double commutator, an 
2 22} {[J [J , V ]] 2 J V V )J V J+·=, ∼

∼ 

∼ 

∼ 

∼ 

∼ 

∼ 

∼ 

∼

∼ 

∼ 

∼ 

∼ 

∼

∼ 

∼

∼ 

∼ 

∼∼ 

∼ 

∼∼ 

Since K∼ 

∼(3) 2 − 2(J∼ 
2}. 

. 

2 2}[J , V ]] 2i [J ,K =, ∼∼∼∼ 

is a vector operator, we have from (2) that 

[J2 ]. 

). 

J K K× + ∼∼∼ 

Also, from Equation (1) we have 

. 

Hence 

−J K K× ∼

∼ 

∼ 

∼ 

∼ 

Also, from equation (1) 

1 
K (V 

) 

. 

≡ . 
2 

17
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Thus, 

}−(J K ε J (V J i (J V× × ×ijk j ∼ 

}−J K J) i (J V× × × ∼ 

∼ 

∼ 

∼ 

∼ 

∼ 

∼ 

∼ 

∼ 

∼ 

)X 
J (V×= ∼ 

)i )k )i = 

∼∼ 

|j,k {z } X 
shift to ε`mk = εk`m since cyclicεijkJj ε . k`mV`Jm 

. . . .. ..jk`m .
.
. 
6 

.
. 

. 

permutation of subscripts leaves ε 
. . . 

unchanged 

X X 
|(δi`δjm − δimδj`)Jj V`Jm = (Jj ViJj − Jj Vj Ji) 

j`m jX 
= (Jj Jj Vi − Jj [Jj , Vi] − Jj Vj Ji) 

j X 
Jj i}εji`V` −(J − V )Ji 

replace by −εij`,6} 

= J2Vi − | 
j` {z a non-cyclic 

}i (J V×= ∼∼ 

X permutation 
+ i} Jj εij`V` )i. 

2 −J K J V (J× = ∼∼ 

2 −(J K J V (J V× ·= i ∼

∼ 

∼ 

∼∼ 

∼∼∼ 

j` 

So we find 

V )J· ∼∼ 

)Ji + �i}�(J�×�V
�� 
)i − �i}�(J�×�V

�� 
)i)i 

or 

. 

Now these results simplify the doubleto commutator,we can use 

∼∼ 

22 2} { − −2 2J V 2(J V )J [J , V·= ∼ 

∼ 

∼∼ 

2} }−2 (2J K 2i K×= ∼

∼∼ 

∼ 

∼ 

∼ 

∼ 

∼∼∼∼[J
2 , [J, V ]] = 2i}[J2, K] = (2i})(i})(−1)(2J × K − 2i}K) 

) 

]| {z } 

18
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2 −J V V∼ 

2 2 2} { −[J [J , V ]] 2 J V 2(J V )J V+·=, ∼ 

∼ 

∼∼∼∼∼∼∼ 

and finally, 

J2 

J2} Q.E.D. 

0 2| −jm J V 2(J V )J V+· ∼

∼ 

∼ 

Now we can obtain selection rules by taking matrix elements of this relation. 

∼ 

Consider two cases: 

∼ 

∼ 

Case I: Elements diagonal in j: Wigner-Eckart Theorem 

∼ 

0 02} | |j(j + 1) jm V jm (J V )J· ∼ 

∼ 

∼{z 

jm0|[J2, A]|jm = hjm0|j(j + 1)A − Aj(j + 1)|jmi = 0 

∼ 

for any operator A. Thus, 

∼ 

jm0|(J · V 00|J 

jm0|[J2 , [J2, V ]]|jm = 0 = 2}2 J2|jm 

or 

|jm − |jm = 0 | } X 
|j00 00 j00 m |jm = m . 

j00 00m 

The (J V ) is scalar with Joperator respect to· a ∼∼∼ 

both m and j, so that j00 = j and m00 
and therefore diagonal in 

0 , and its matrix elements are= m 

independent of m. Hence we find 

∼ 
∼∼ 

∼ 

j|J · V |j
jm0|V |jm = jm0|V |jm 

}2j(j + 1) 

This is the Wigner-Eckart theorem for a vector operator. 

19
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0|jm J∼
|j J V· ∼∼ 

Powell & Craseman, page 371 

0|jm V∼ 

is therefore parallel Jto ∼ 

|j 

value of the normal Jcomponent to ∼ 

j(j + 1)}2 

around Jprecesses ∼ 

|jm 

Suppose V∼ 

|jm= 

J 
6 

∼ 
The time averaged. 

is zero. The. . . .. .. .. .. 
.. 

. 
. 

time of Vaverage. ∼. 
.. 

magnitude.. 
. -

and has 

. 

. . J · V�.
.

. � 
. 
. �.

. |J | 
. 

. 
.. 

. 
.. . . . . . . 

V 

J · V 

. 

�. 

∼ 

. 

V· ∼ 
Hence, on this model, the average is�J 

|J | � 
-

∼ � 

it that, for Vstates vector operatorany ∼ 

∼V J∼ 
∼∼ 

∼ 

J 

the matrix elements diagonal in j are simply proportional to the corre-

(J · V )
� = = 

J2 |J | |J | 

The theorem is very useful, as , 

itself. The proportionality constant, c0(j) =sponding matrix elements of J∼� 
(}j(j + 1)) is the same for all m–states. 

that all matrix elements of V∼ 

via the Wigner-Eckart Theorem: 

|j (J V· ∼∼ 

hj, m + 1|V+|jmi = c0(j)[j(j + 1) − m(m + 1)]1/2 

hjm|Vz|jmi = c0(j)m 

hj, m − 1|V−|jmi = c0(j)[j(j + 1) − m(m − 1)]1/2 

with c0(j) = hα0jkV kαji a reduced matrix element. In particular, we note 

)|j Therefore, we have 

between j = 0 states vanish. 

Case II: Elements non-diagonal in j 

Now consider j0 6= j, again take matrix elements of Equation (3). LHS gives 

j0 m 0|[J2 , [J2, V ]]|jm = j0 m 0|J2(J2V − V J2) − (J2V − V J2)J2|jm 

= {j02(j0 + 1)2 − 2j(j + 1)j(j + 1) + j2(j + 1)2} hj0 m 0|V |jmi . 

20
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RHS gives * + 

2h2 j0 m 0|J2V − 2(J · V )J +V J2|jm = 2}2{j0(j0 + 1) + j(j + 1)} j0 m 0|V |jm ∼ ∼ ∼ ∼ ∼ ∼| {z } 

drops out as j0 m 0|J |jm = 0, because j0 =6 j. ∼ 

Equating LHS = RHS and rearranging gives 

{(j0 − j)2 − 1} {(j0 + 1 + 1)2 −1} j0 m 0|V |jm = 0| {z } ∼ 

This factor > 0 since j0 =6 j and j0 ≥ 0, j ≥ 0 

Therefore 

j0 m 0|V |jm = 0∼ 

unless (j0 − j)2 − 1 = 0 or j0 = j ± 1. 

The complete selection rules for any vector operator thus are: 

j0 m 0|V |jm = 0 unless∼ 

j0 = j =6 0 or j0 = j ± 1 

and, for any j0 , j 

m 0 = m or m 0 = m ± 1. 

We have already found (page 19) the matrix element for j0 = j. Now we will 

do j0 = j + 1. 

Consider [J+, V+] = [Jx + iJy, Vx + iVy] 

= [Jx, Vx] + i[Jx, Vy] + i[Jy, Vx] − [Jy, Vy] 

↓ ↓ ↓ ↓ 

0 i}Vz − i}Vz 0 

= 0. 

21
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Take matrix element and use hj, m + 1|J+|j, mi = }[j(j + 1) − m(m + 1)]1/2 

= }[(j + m + 1)(j − 1)]1/2 

0 = hj + 1,m + 1|(J+V+ − V+J+|j, m − 1i 

= hj + 1,m + 1|J+|j + 1,mi hj + 1,m|V+|j, m − 1i 

− hj + 1,m + 1|V+|jmi hjm|J+|j, m − 1i 

where we use the Δm = +1 selection rule for V+ and J+. 

This provides a recurrence relation for the matrix elements. 

hj + 1,m + 1|J+|j + 1,mi hj + 1,m|V+|j, m − 1i = hj + 1,m + 1|V+|jmi 

× hjm|J+|j, m − 1i 
( (}([(j(−(m((+ 1)(( j + m + 2)]1/2 }(((((([(j − m + 1)(j + m)]1/2 

So 
hj + 1,m|V+|j, m − 1i hj + 1,m + 1|V+|j, mi 

= . 
(j + m)1/2 (j + m + 2)1/2 

This takes on a simple pattern if we divide both sides by (j + m + 1)1/2: 

hj + 1,m|V+|j, m − 1i hj + 1,m + 1|V+|j, mi −c+(j, m) ≡ = 
[(j + m + 1)(j + m)]1/2 [(j + m + 2)(j + m + 1)]1/2 

= −c+(j, m + 1). 

Since m was arbitrary, c+(j, m) = c+(j, m + 1) = c+(j, any other m) so the 

ratio c+(j) must be independent of m. The m–independence of the matrix 

element is therefore given by 

hj + 1,m + 1|V+|j, mi = −c+(j)[(j + m + 2)(j + m + 1)]1/2 , 

with c+(j) = α0, j + 1kV∼ kα, j a reduced matrix element that depends on 

the detailed nature of V , not merely on its vector character. However, it can ∼ 

be evaluated if the matrix element of V can be evaluated for any single m∼ 

value, e.g., m = j or m = 0, for which the evaluation is often simpler than 

in the general case. 

22
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Now determine the j0 = j + 1 elements of VZ using the above result for V+. 

Start with 

−2}VZ = [J−, V+] which expresses VZ in terms of J− and V+, 
whose matrix elements we now know. 

−2} hj + 1,m|VZ |j, mi = hj + 1,m|J−|j + 1,m + 1i hj + 1,m + 1|V+|j, mi 

− hj + 1,m|V+|j, m − 1i hj, m − 1|J−|j, mi 

= }[(j + m + 2)(j − m + 1)]1/2(−c+(j))[(j + m + 2)(j + m + 1)]1/2 

− }(−c+(j))[(j + m + 1)(j + m)]1/2[(j + m)(j − m + 1)]1/2 

= −}c+(j)[(�j +�m� + 2) − �(j�+�m �)][(j + m + 1)(j − m + 1)]1/2 

= −2}c+(j)[(j + m + 1)(j − m + 1)]1/2 

Thus, 

hj + 1,m|VZ |j, mi = c+(j)[(j + m + 1)(j − m + 1)]1/2 . 

Similarly, from 

}V− = [J−, VZ ] 

we find 

hj + 1,m − 1|V−|j, mi = c+(j)[(j − m + 2)(j − m + 1)]1/2 . 

Results for j0 = j − 1 are derived in analogous fashion and involve a third re-

duced matrix element, c−(j) = hα0, j − 1kV kα, ji. Hence the m–dependence 
of a scalar or vector operator follows from its scalar or vector character only. 

Classification of operators by their transformation properties under rotation 

can be extended to tensors of any rank. In each case the form of the matrix 

elements is determined except for factors that depend on α and j. 

23
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SUMMARY: Non-zero Matrix Elements of a Vector Op-
erator, V∼ 

Δj = +1 hj + 1,m ± 1|V±|jmi =  c+(j)[(j ± m + 2)(j ± m + 1)]1/2 

hj + 1,m|VZ |jmi = c+(j)[(j + m + 1)(j − m + 1)]1/2 

Δj = 0 hj, m ± 1|V±|jmi = c0(j)[(j ± m + 1)(j   m)]1/2 

hjm|VZ |jmi = c0(j)m 

Δj = −1 hj − 1,m ± 1|V±|jmi = ±c−(j)[(j   m)(j   m − 1)]1/2 

hj − 1,m|VZ |jmi = c−(j)[(j − m)(j + m)]1/2 

24
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