Supplement \#1 to Lecture \#27

Angular Momentum Eigenvalues (from lecture notes by Professor Dudley Herschbach)
Consider any Hermitian operator $\underset{\sim}{J}$ whose components satisfy the following commutation rules

$$
\left[J_{x}, J_{y}\right]=i \hbar J_{z}
$$

and the cyclic permutations thereof. Equivalently, the rules may be written as

$$
\underset{\sim}{J} \times \underset{\sim}{J}=i \hbar \underset{\sim}{J}
$$

or as

$$
\left[J_{\ell}, J_{m}\right]=i \hbar \sum_{n} \varepsilon_{\ell m n} J_{n}
$$

where

$$
\begin{aligned}
\varepsilon_{\ell m n} & =+1 \text { if } \ell, m, n \text { are in cyclic order } \\
& =-1 \text { if } \ell, m, n \text { are in anti-cyclic order } \\
& =0 \text { if any two of } \ell, m, n \text { are the same. }
\end{aligned}
$$

Seek to find eigenvalues λ for J^{2} and μ for J_{z} such that

$$
\begin{aligned}
J^{2}|\lambda \mu\rangle & =\lambda|\lambda \mu\rangle \\
J_{z}|\lambda \mu\rangle & =\mu|\lambda \mu\rangle .
\end{aligned}
$$

Since J^{2} and J_{z} are Hermitian, λ and μ are real, and $|\lambda \mu\rangle$ are the simultaneous eigenvectors which render J^{2} and J_{z} simultaneously diagonal.
First show $\lambda \geq \mu^{2}$
Proof: $\langle\lambda \mu| J^{2}-J_{z}^{2}|\lambda \mu\rangle=\lambda-\mu^{2}$
But

$$
J^{2}-J_{z}^{2}=J_{x}^{2}+J_{y}^{2}+y_{z}^{Y}-y_{z}^{Y}
$$

$$
\begin{aligned}
\lambda \mu J_{x}^{2} \lambda \mu & =\sum_{\lambda^{\prime} \mu^{\prime}}\langle\lambda \mu| J_{x}\left|\lambda^{\prime} \mu^{\prime}\right\rangle \underbrace{\left\langle\lambda^{\prime} \mu^{\prime}\right| J_{x}|\lambda \mu\rangle}_{\lambda \mu J_{x}^{\dagger} \lambda^{\prime} \mu^{\prime}} \text { and } J_{x}^{\dagger}=J_{x} \\
& \left.=\sum_{\lambda^{\prime} \mu^{\prime}}\left|\langle\lambda \mu| J_{x}\right| \lambda^{\prime} \mu^{\prime}\right\rangle\left.\right|^{2} \rightarrow 0 \text { and similarly for } J_{y}^{2} \text { term. }
\end{aligned}
$$

So

$$
\lambda \mu J_{x}^{2}+J_{y}^{2} \lambda \mu=\lambda-\mu^{2} \geq 0 \quad \text { Q. E. D. }
$$

Since $\mu^{2} \geq 0$ this also implies $\lambda \geq 0$.
It is convenient to use the non-Hermitian operators

$$
J_{ \pm}=J_{x} \pm i J_{y} \quad \text { Note } J_{+}^{\dagger}=J_{-}, J_{-}^{\dagger}=J_{+}
$$

These satisfy

$$
\begin{aligned}
{\left[J_{z}, J_{ \pm}\right]= \pm \hbar J_{ \pm} \quad \text { since } \quad\left[J_{z}, J_{x} \pm i J_{y}\right] } & =i \hbar J_{y} \pm i\left(-i \hbar J_{x}\right) \\
& =\hbar\left(J_{x} \pm i J_{y}\right)=\hbar J_{ \pm}
\end{aligned}
$$

Apply this to $|\lambda \mu\rangle$ and find

$$
\left(J_{z} J_{ \pm}-J_{ \pm} J_{z}\right)|\lambda \mu\rangle= \pm \hbar J_{ \pm}|\lambda \mu\rangle
$$

or

$$
\begin{aligned}
J_{z}\left(J_{ \pm}|\lambda \mu\rangle\right) & =\left(J_{ \pm} J_{z} \pm \hbar J_{ \pm}\right)|\lambda \mu\rangle \\
& =(\mu \pm \hbar)\left(J_{ \pm}|\lambda \mu\rangle\right) \quad \text { since } J_{z}|\lambda \mu\rangle=\mu|\lambda \mu\rangle .
\end{aligned}
$$

Thus $J_{ \pm}|\lambda \mu\rangle$ is an eigenvector of J_{z} with eigenvalue $\mu \pm \hbar$. Hence J_{+}"raises" the eigenvalue of μ to $\mu+\hbar$ and J_{-}"lowers" the eigenvalue of μ to $\mu-\hbar$. Now note

$$
\left[J^{2}, J_{ \pm}\right]=0
$$

since J^{2} commutes with its components J_{x} and J_{y}. Thus

$$
J^{2}\left(J_{ \pm}|\lambda \mu\rangle\right)=J_{ \pm} \underbrace{J^{2}|\lambda \mu\rangle}_{\lambda|\lambda \mu\rangle}=\lambda\left(J_{ \pm}|\lambda \mu\rangle\right) .
$$

Thus $J_{ \pm}|\lambda \mu\rangle$ remains an eigenvector of J^{2} with the same eigenvalue λ as $|\lambda \mu\rangle$.
By repeated application of J_{+}we can get eigenvectors with J_{z} eigenvalues of $\mu+\hbar, \mu+2 \hbar, \ldots$ but the same eigenvalue λ of J^{2}. Since $\mu^{2} \geq \lambda$, for a given λ there must be some highest value of μ, call it μ_{h}, such that $J_{+}\left|\lambda \mu_{h}\right\rangle=0$ rather than generating a new eigenvector of still higher J_{z}-eigenvalue. Similarly, repeated application of J_{-}gives $\mu-\hbar, \mu-2 \hbar, \ldots$ but would eventually violate $\mu^{2} \leq \lambda$ unless there is some lowest value of μ, call it μ_{ℓ}, such that $J_{-}\left|\lambda \mu_{\ell}\right\rangle=0$.
Now we use these conditions to show $\mu_{n}=-\mu_{\ell}$. Consider applying J_{-}to $J_{+}\left|\lambda \mu_{h}\right\rangle=0$. Note the identity:

$$
\begin{aligned}
J_{-} J_{+} & =\left(J_{x}-i J_{y}\right)\left(J_{x}+i J_{y}\right) \\
& =J_{x}^{2}+J_{y}^{2}+i\left[J_{x}, J_{y}\right] \\
& =J^{2}-J_{z}^{2}-\hbar J_{z} .
\end{aligned}
$$

Thus

$$
J_{-} J_{+}|\lambda \mu\rangle=\left(\lambda-\mu_{h}^{2}-\hbar \mu_{h}\right)\left|\lambda \mu_{h}\right\rangle=0
$$

Taking the matrix element with $\left\langle\lambda \mu_{h}\right|$ we find

$$
\lambda-\mu_{h}^{2}-\hbar \mu_{h}=0 .
$$

Similarly,

$$
J_{+} J_{-}\left|\lambda \mu_{\ell}\right\rangle=\left(J^{2}-J_{z}^{2}+\hbar J_{z}\right)\left|\lambda \mu_{\ell}\right\rangle
$$

leads to

$$
\lambda-\mu_{\ell}^{2}+\hbar \mu_{\ell}=0
$$

Hence

$$
\lambda=\underbrace{\mu_{h}\left(\mu_{h}+\hbar\right)=\mu_{\ell}\left(\mu_{\ell}-\hbar\right)}
$$

Two solutions: $\underline{\mu_{h}=-\mu_{\ell}}$
or $\mu_{h}=\mu_{\ell}-\hbar$ but this second solution must be rejected since μ_{h} was assumed to be larger than μ_{ℓ}.

Now we can conclude also that $\mu_{h}=\mu_{\ell}+n \hbar$ where n is some integer. This follows since, if we start from $\left|\lambda \mu_{\ell}\right\rangle$ and apply J_{+}repeatedly, we obtain the sequence of eigenvectors:

$$
\underbrace{\left|\lambda \mu_{\ell}\right\rangle}_{\mu_{\ell}}, \underbrace{J_{+}\left|\lambda \mu_{\ell}\right\rangle}_{\mu_{\ell}+\hbar}, \underbrace{J_{+}^{2}\left|\lambda \mu_{\ell}\right\rangle}_{\mu_{\ell}+2 \hbar}, \cdots \underbrace{J_{+}^{n}\left|\lambda \mu_{\ell}\right\rangle}_{\mu_{\ell}+n \hbar=\mu_{\hbar}}=\left|\lambda \mu_{n}\right\rangle
$$

Thus

$$
\mu_{h}=-\mu_{\ell}=\mu_{\ell}+n \hbar
$$

or

$$
\mu_{\ell}=-\frac{n}{2} \hbar, \mu_{h}=+\frac{n}{2} \hbar
$$

where $n=0,1,2, \ldots$ is some integer (related to the value of λ).
For convenience, we write

$$
\mu=m \hbar, \quad m=-j,-j+1, \cdots+j
$$

where $j=\frac{n}{2}$, with $j=0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots$
Then eigenvalues of J_{z} are $\underbrace{-j \hbar,(-j+1) \hbar, \ldots j \hbar}_{2 j+1 \text { different values }}$
Eigenvalues of J^{2} are given by

$$
\begin{aligned}
& \lambda=\mu_{h}\left(\mu_{h}+\hbar\right)=\mu_{\ell}\left(\mu_{\ell}-\hbar\right)=j \hbar(j \hbar+\hbar)=-j \hbar(-j \hbar-\hbar) \\
& \lambda=j(j+1) \hbar^{2}
\end{aligned}
$$

Also, it is convenient to label the eigenvectors by j, m rather than λ, μ, so

$$
\begin{aligned}
J^{2}|j m\rangle & =j(j+1) \hbar^{2}|j m\rangle \\
j_{z}|j m\rangle & =m \hbar|j m\rangle .
\end{aligned}
$$

Comments

We derived the above eigenvalues using only the commutation property and the Hermitian property. We find that both integer and half-integer values of j and m are allowed.

Actually, we have solved a much more general problem than that posed by the orbital angular momentum of a particle. Thus, for several particles in the same central force field, the total angular momentum,

$$
\sum_{n}{\underset{\sim}{L}}^{(n)}
$$

also satisfies these relations, even if the particles interact with each other. Spin angular momenta likewise satisfy these relations.
For orbital angular momentum, $\underset{\sim}{L}=\underset{\sim}{q} \times \underset{\sim}{p}$ must require, in addition, that the system returns to its original state under a rotation by 2π. Such a rotation takes $\underset{\sim}{p} \rightarrow \underset{\sim}{p}$ and $\underset{\sim}{q} \rightarrow \underset{\sim}{q}$ so $\underset{\sim}{q} \times \underset{\sim}{p} \rightarrow \underset{\sim}{q} \times \underset{\sim}{p}$ and hence the eigenvectors of L^{2} and L_{z} must be unchanged:

$$
e^{-i 2 \pi J_{z} / \hbar}|j m\rangle=e^{-i 2 \pi m}|j m\rangle
$$

$e^{-i 2 \pi m}=+1$ if m is integer and hence integer eigenvalues are acceptable for L^{2}, L_{z}. Half-integer values give $e^{-i 2 \pi m}=-1$ and hence are not acceptable for orbital angular momentum.
Half-integers do apply for spin angular momenta, which are not constructed from any $\underset{\sim}{q} \times \underset{\sim}{p}$ and thus can take on both integer and half-integer eigenvalues. This illustrates the power of operator derivation. A more general case would not have been included if we had used wave mechanical methods and representations by differential operators.
We have shown that, for a fixed j value,

$$
J_{+}|j m\rangle=a_{m}|j, m+1\rangle \text { and } J_{-}|j m\rangle=b_{m}|j, m-1\rangle,
$$

where a_{m} and b_{m} are constants, possibly complex numbers. The proportionality constants are simply related to each other, since

$$
\begin{aligned}
a_{m} & =\langle j, m+1| J_{+}|j m\rangle=\langle j m \underbrace{\left|J_{+}^{\dagger}\right|}_{J_{-}} j, m+1\rangle^{*}=(\int \psi_{j m}^{*} \underbrace{J_{-} \psi_{j, m+1}}_{b_{m+1} \psi_{j, m}} d \tau)^{*} \\
& =b_{m+1}^{*}
\end{aligned}
$$

Now, to evaluate a_{m}, consider the identity

$$
J_{-} J_{+}=J^{2}-J_{z}^{2}-\hbar J_{z} .
$$

Apply this to $|j m\rangle$, then you have

$$
\begin{gathered}
J_{-} J_{+}|j m\rangle=a_{m} J_{-}|j, m+1\rangle=a_{m} b_{m+1}|j m\rangle=\left|a_{m}\right|^{2}|j m\rangle \\
J^{2}-J_{z}^{2}-\hbar J_{z}|j m\rangle=\left(j(j+1)-m^{2}-m\right) \hbar^{2}|j m\rangle
\end{gathered}
$$

Hence

$$
a_{m}=\underbrace{[j(j+1)-m(m+1)}_{(j-m)(j+m+1)}]^{1 / 2} \hbar e^{i \phi m}
$$

where $e^{i \phi m}$ is an arbitrary phase factor. The usual convention is to take $\phi=0$; this fixes the relative phases of the vectors $|j m\rangle$ having different values of m but the same j.
The only non-vanishing matrix elements of J_{+}and J_{-}are:

$$
\begin{aligned}
& \qquad\langle j, m+1| J_{+}|j m\rangle=\langle j, m| J_{-}|j, m+1\rangle=\left[j(j+1)-m_{\uparrow}^{m}(m+1)\right]^{1 / 2} \hbar \\
& \text { always the lower times the } \\
& \text { ar you can write this alternatively as } \\
& \text { higher of the two } m \text {-values in } \\
& \text { the matrix element }
\end{aligned}
$$

$$
\begin{aligned}
\left\langle j^{\prime}, m^{\prime}\right| J_{+}|j m\rangle & =[j(j+1)-m(m+1)]^{1 / 2} \hbar \delta_{j^{\prime}, j} \delta_{m^{\prime}, m+1} \\
\left\langle j^{\prime}, m^{\prime}\right| J_{-}|j m\rangle & =[j(j+1)-m(m-1)]^{1 / 2} \hbar \delta_{j^{\prime}, j} \delta_{m^{\prime}, m-1}
\end{aligned}
$$

List of non-zero elements:

$$
\begin{aligned}
& j m\left|J^{2}\right| j m=j(j+1) \hbar^{2} \quad \begin{array}{l}
\text { "add the bigger } m \text { to } j \text { and } \\
\text { subtract the smaller" }
\end{array} \\
& \langle j m| J_{z}|j m\rangle=m \hbar \\
& \langle j, m \pm 1| J_{ \pm}|j m\rangle=[j(j+1)-m(m \pm 1)]^{1 / 2} \hbar=[\overbrace{(j \pm m+1)(j \mp m)}]^{1 / 2} \hbar \\
& J_{x}=\frac{1}{2}\left(J_{+}+J_{-}\right), \quad J_{y}=\frac{1}{2 i}\left(J_{+}-J_{-}\right) \\
& \langle j, m \pm 1| J_{x}|j m\rangle=\frac{1}{2}[j(j+1)-m(m \pm 1)]^{1 / 2} \hbar \\
& \langle j, m \pm 1| J_{y}|j m\rangle= \pm \frac{1}{2 i}[j(j+1)-m(m \pm 1)]^{1 / 2} \hbar
\end{aligned}
$$

We can summarize elements of J_{x}, J_{y}, J_{z} by:

$$
\begin{aligned}
j m|J| j m & =\hat{z} m \hbar \\
j, m \pm 1|J| j m & =(\hat{x} \pm i \hat{y}) \frac{1}{2}[j(j+1)-m(m \pm 1)]^{1 / 2} \hbar
\end{aligned}
$$

Comment

Thus we have found all matrix elements of J with eigenvectors $|j m\rangle$ of J^{2}, J_{z}. These eigenvectors and their properties are important, since any time we have a system of particles isolated in free space, their total angular momentum J^{2}, J_{z} commutes with the total Hamiltonian, no matter what kind of forces hold the system together (central or not). That is, the total angular momentum of an isolated system is a constant of the motion in quantum mechanics, just as in classical mechanics.
Hence it is important to be able to take matrix elements of other operators in the angular momentum states which characterize an isolated system.

Examples

$$
j=0: \quad J_{+}=(0) \quad J_{-}=(0) \quad J_{z}=(0) \quad J^{2}=(0)
$$

$$
\begin{gathered}
j=\frac{1}{2}: J_{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad J_{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad J_{z}=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right) \quad J^{2}=\left(\begin{array}{cc}
\frac{3}{4} & 0 \\
0 & \frac{3}{4}
\end{array}\right) \\
j=1: \\
J_{+}=\left(\begin{array}{ccc}
0 & \sqrt{2} & 0 \\
0 & 0 & \sqrt{2} \\
0 & 0 & 0
\end{array}\right) \quad J_{z}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) \\
j=\frac{3}{2}: \\
J_{-}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
\sqrt{2} & 0 & 0 \\
0 & \sqrt{2} & 0
\end{array}\right) \quad J^{2}=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right) \\
J_{+}=\left(\begin{array}{cccc}
0 & \sqrt{3} & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & \sqrt{3} \\
0 & 0 & 0 & 0
\end{array}\right) \quad J_{z}=\left(\begin{array}{cccc}
\frac{3}{2} & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & -\frac{3}{2}
\end{array}\right) \\
J_{-}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\sqrt{3} & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & \sqrt{3} & 0
\end{array}\right) \quad J^{2}=\left(\begin{array}{cccc}
\frac{15}{4} & 0 & 0 & 0 \\
0 & \frac{15}{4} & 0 & 0 \\
0 & 0 & \frac{15}{4} & 0 \\
0 & 0 & 0 & \frac{15}{4}
\end{array}\right)
\end{gathered}
$$

MOMENTA AS DISPLACEMENT OPERATORS:

Geometrical Meaning of Commutation Rules

 Linear MomentumLet $\left|x_{1}\right\rangle$ be an eigenvector of the position operator X with eigenvalue x_{1}, i.e.

$$
X\left|x_{1}\right\rangle=x_{1}\left|x_{1}\right\rangle .
$$

Consider the new state vector defined by $e^{-i a p_{x} / \hbar}\left|x_{1}\right\rangle$; we might ask whether it is also an eigenvector of X. To find out, evaluate

Now

$$
X\left(e^{-i a p_{x} / \hbar}\left|x_{1}\right\rangle\right)=e^{-i a p_{x} / \hbar} \underbrace{\left(X\left|x_{1}\right\rangle\right)}_{x_{1}\left|x_{1}\right\rangle}+\underbrace{\left[X, e^{\left.-i a p_{x} / \hbar\right]}\right]}_{\uparrow}\left|x_{1}\right\rangle
$$

$$
\begin{aligned}
{\left[X, e^{-i a p_{x} / \hbar}\right] } & =i \hbar \frac{d}{d p_{x}}\left(e^{-i a p_{x} / \hbar}\right) \\
& =a e^{-i a a^{2}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
X\left(e^{-i a p_{x} / \hbar}\left|x_{1}\right\rangle\right) & =e^{-i a p_{x} / \hbar}(X+a)\left|x_{1}\right\rangle=e^{-i a p_{x} / \hbar}\left(x_{1}+a\right)\left|x_{1}\right\rangle \\
& =\left(x_{1}+a\right)\left(e^{-i a p_{x} / \hbar}\left|x_{1}\right\rangle\right) .
\end{aligned}
$$

Hence $e^{-i a p_{x} / \hbar}\left|x_{1}\right\rangle$ is indeed an eigenvector of X with eigenvalue $x_{1}+a$ instead of x_{1}. The unitary operator $e^{-i a p_{x} / \hbar}$ formed from the linear momentum operator p_{x} acts as a displacement operator for x position coordinates. Similarly, p_{y} generates displacements of the y coordinate and p_{z} of the z coordinate. It is a geometrical fact that linear displacements of a point commute. For example:

The same result is obtained by applying displacements in either order. This agrees with $\left[p_{x}, p_{y}\right]=0\left(\right.$ and $\left.\left\{p_{x}, p_{y}\right\}=0\right)$.

Angular momentum

L_{x}, L_{y}, L_{z} operators generate angular displacements or rotations; e.g.,

$$
e^{-i \phi L_{x} / \hbar}
$$

gives a rotation by angle ϕ about the x-axis, etc. However, geometrical rotations about different axes do not commute. For example, consider a state representing a particle on the z-axis, $\left|z_{0}\right\rangle$. Now

$$
\underbrace{e^{-i \frac{\pi}{2} L_{y} / \hbar}}_{\text {rotation by } \pi / 2} \underbrace{e^{-i \frac{\pi}{2} L_{x} / \hbar}\left|z_{0}\right\rangle}_{\text {rotation by } \pi / 2} \Rightarrow \text { particle on }-y \text { axis } .-\longrightarrow y
$$ about y-axis about x-axis

But

$$
\underbrace{e^{-i \frac{\pi}{2} L_{x} / \hbar}}_{\begin{array}{l}
\text { rotation by } \pi / 2 \\
\text { about } x \text {-axis }
\end{array}} \underbrace{e^{-i \frac{\pi}{2} L_{y} / \hbar}\left|z_{0}\right\rangle}_{\begin{array}{l}
\text { rotation by } \pi / 2 \\
\text { about } y \text {-axis }
\end{array}} \Rightarrow \text { particle on }+x \text { axis }
$$

The results of these two rotations taken in opposite order differ by a rotation about the z-axis. Thus, because the rotations about different axes don't commute, we must expect the angular momentum operators, which generate these rotations, not to commute with each other. Indeed,

$$
\left[L_{x}, L_{y}\right]=i \hbar L_{z}
$$

corresponds to the above example, in which the commutator of rotations about the x and y axes depends on a z-axis rotation.

Rotational Transformation Properties and Selection Rules

The various observables of a dynamical system can be classified according to their transformation properties under rotations. This is of great value in determining the matrix elements of the corresponding operators and, in particular, leads to selection rules which limit the number of non-zero matrxix elements.
Under action of the rotation operator $U=e \stackrel{i \phi \cdot J / \hbar}{\sim}$ an operator O is transformed according to

$$
{\underset{\sim}{U}}^{Q^{\prime}}=\underset{\sim}{U} \underset{\sim}{O} \underset{\sim}{U}{ }^{\dagger} .
$$

A scalar operator $\underset{\sim}{S}$ is one which is invariant to this transformation (e.g., the Hamiltonian of an isolated system). Hence, for a scalar operator

$$
\underset{\sim}{U} \underset{\sim}{S} U_{\sim}^{\dagger}=\underset{\sim}{S}
$$

or

$$
\underset{\sim}{U} \underset{\sim}{S}-\underset{\sim}{S} \underset{\sim}{U}=0 \quad \text { or }[\underset{\sim}{U}, \underset{\sim}{U}]=0 .
$$

Thus, a scalar commutes with every rotation operator. Consider, in particular, an infinitesimal rotation $d \underset{\sim}{\phi}$, for which

$$
\underset{\sim}{U}=1+\frac{i}{\hbar} d \underset{\sim}{\phi} \cdot \underset{\sim}{J} .
$$

Since the direction of $d \underset{\sim}{\phi}$ is arbitrary, $\underset{\sim}{S}$ must commute with each component of $\underset{\sim}{J}$, or $[\underset{\sim}{S}, \underset{\sim}{J}]=0$. As shown below, this property leads to the selection rules

$$
\Delta j=0, \quad \Delta m=0
$$

for the non-zero matrix elements of a scalar operator.
A vector operator $\underset{\sim}{V}$ is one with three components, V_{x}, V_{y}, V_{z} which transform under rotations like the coordinates of a point. For an infinitesimal rotation,

$$
{\underset{\sim}{V}}^{\prime}=\left(1+\frac{i}{\hbar} d \underset{\sim}{\phi} \cdot \underset{\sim}{J}\right) \underset{\sim}{V}\left(1-\frac{i}{\hbar} d \phi \underset{\sim}{J} \underset{\sim}{J}\right) .
$$

Now note that if the position vector ${\underset{\sim}{r}}^{\prime}$ is obtained from $\underset{\sim}{r}$ by rotation through a small angle $d \phi$ about an axis in the direction of the vector $d \phi$, we have, to first order in $d \phi$,
and so

$$
\underset{\sim}{{\underset{\sim}{r}}^{\prime}}=\underset{\sim}{r}+d \underset{\sim}{\underset{\sim}{r}}
$$

$$
{\underset{\sim}{V}}^{\prime}=\underset{\sim}{V}+d \underset{\sim}{\phi} \times \underset{\sim}{V} .
$$

Hence, if terms in $(d \phi)^{2}$ are neglected, we obtain

$$
d \underset{\sim}{\phi} \times \underset{\sim}{V}=\frac{i}{\hbar}[(d \underset{\sim}{\phi} \cdot \underset{\sim}{J}) \underset{\sim}{V}-\underset{\sim}{V}(d \underset{\sim}{\phi} \cdot \underset{\sim}{J})] .
$$

Since $d \phi$ is arbitrary, this relation gives the commutator of $\underset{\sim}{V}$ with any component of $\underset{\sim}{J}$. Thus, if $d \underset{\sim}{d}=\varepsilon \hat{z}$ is a rotation about the z-axis, we find

$$
\notin(\hat{z} \times \underset{\sim}{V})=\notin \frac{i}{\hbar}\left[J_{z} \underset{\sim}{V}-\underset{\sim}{V} J_{z}\right]
$$

or

$$
\left[J_{z}, \underset{\sim}{V}\right]=-i \hbar(\hat{z} \times \underset{\sim}{V}) \quad \text { or } \quad \begin{aligned}
{\left[J_{z}, V_{x}\right] } & =-i \hbar\left(-V_{y}\right)=i \hbar V_{y} \\
{\left[J_{z}, V_{y}\right] } & =-i \hbar\left(-V_{x}\right)=-i \hbar V_{x} \\
{\left[J_{z}, V_{z}\right] } & =0
\end{aligned}
$$

etc.
In this way we obtain a set of nine commutation rules:

$$
\begin{array}{lll}
{\left[J_{x}, V_{x}\right]=0} & {\left[J_{y}, V_{x}\right]=-i \hbar V_{z}} & {\left[J_{z}, V_{x}\right]=-i \hbar V_{y}} \\
{\left[J_{x}, V_{y}\right]=i \hbar V_{z}} & {\left[J_{y}, V_{y}\right]=0} & {\left[J_{z}, V_{y}\right]=-i \hbar V_{y}} \\
{\left[J_{x}, V_{z}\right]=-i \hbar V_{y}} & {\left[J_{y}, V_{z}\right]=i \hbar V_{x}} & {\left[J_{z}, V_{z}\right]=0}
\end{array}
$$

The selection rules for non-zero matrix elements of a vector operator, i.e. an operator which satisfies the above rules (e.g., position $\underset{\sim}{r}$, linear momentum $\underset{\sim}{p}$, the angular momentum $\underset{\sim}{J}$ itself) are shown below to be given by

$$
\Delta j=0 \text { and } \pm 1 \text { for all components of } \underset{\sim}{V}
$$

with

$$
\begin{aligned}
& \Delta m=0 \text { for } V_{z} \\
& \Delta m= \pm 1 \text { for } V_{ \pm}=V_{x} \pm i V_{y}
\end{aligned}
$$

Scalar Operators, \mathbf{S}^{1}

Defined by $[\underset{\sim}{S}, \underset{\sim}{J}]=0$, for all three components of $\underset{\sim}{J}$. Corollary is $\left[S, J^{2}\right]=0$ and $\left[S, J_{z}\right]=0$. If we take the matrix elements, we have

$$
\begin{aligned}
j^{\prime} m^{\prime}\left|\left[S, J^{2}\right]\right| j m & =0 \\
& =j^{\prime} m^{\prime}\left|S J^{2}-J^{2} S\right| j m \\
& =\hbar^{2}\left\langle j^{\prime} m^{\prime}\right| S j(j+1)-j^{\prime}\left(j^{\prime}+1\right) S|j m\rangle \\
& =\hbar^{2}\left[j(j+1)-j^{\prime}\left(j^{\prime}+1\right)\right]\left\langle j^{\prime} m^{\prime}\right| S|j m\rangle .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\left\langle j^{\prime} m^{\prime}\right|\left[S, J_{z}\right]|j m\rangle & =0 \\
& =\left\langle j^{\prime} m^{\prime}\right| S J_{z}-J_{z} S|j m\rangle \\
& =\hbar\left\langle j^{\prime} m^{\prime}\right| S m-m^{\prime} S|j m\rangle \\
& =\hbar\left(m-m^{\prime}\right)\left\langle j^{\prime} m^{\prime}\right| S|j m\rangle
\end{aligned}
$$

Therefore, $\left\langle j^{\prime} m^{\prime}\right| S|j m\rangle$ must vanish unless $j=j^{\prime}$ and $m^{\prime}=m^{\prime}$. "Selection rules" for non-zero elements are: $\Delta j=0$ and $\Delta m=0$.
Let $s_{j m} \equiv\langle j m| S|j m\rangle$ denote the non-vanishing element. Since this is the only non-zero matrix element, $|j m\rangle$ is an eigenvector of S, i.e. $S|j m\rangle=s_{j m}|j m\rangle$. Now we can show that the eigenvalues of the scalar operator S don't depend on m. Since S commutes with $J_{ \pm}=J_{x} \pm i J_{y}$, we have

$$
S\left(J_{+}|j m\rangle\right)=J_{+} S|j m\rangle=s_{j m}\left(J_{+}|j m\rangle\right) .
$$

But $J_{+}|j m\rangle$ is proportional to $|j, m+1\rangle$ and still has some eigenvalue $s_{j m}$ of S. We could continue this with $J_{+}^{2} \rightarrow m+2, \ldots$ and with $J_{-} \rightarrow m-1$,

[^0]$J_{-}^{2} \rightarrow m-2$, etc., and would get the same eigenvalue $s_{j m}$ of S for all m states of a given j. Hence we would obtain
$$
\left\langle j^{\prime} m^{\prime}\right| S|j m\rangle=\langle j\|S\| j\rangle \delta_{j j^{\prime}} \delta_{m m^{\prime}}
$$
where $\langle j\|S\| j\rangle$ is called a reduced matrix element, a number that does not depend on m.
The above equation only describes the properties of S which are associated with its scalar character. In general, the states of the system will depend upon other quantum numbers in addition to j and m. If these are denoted collectively by α, the scalar operator need not be diagonal in α, so the general statement becomes
$$
\left\langle\alpha^{\prime} j^{\prime} m^{\prime}\right| S|\alpha j m\rangle=\left\langle\alpha^{\prime} j\|S\| \alpha j\right\rangle \delta_{j j^{\prime}} \delta_{m m^{\prime}}
$$
for
$$
[S, J]=0 .
$$

Vector Operators, V

Definition: A vector operator $\underset{\sim}{V}$ with respect to the angular momentum $\underset{\sim}{J}$ is any set of three operators V_{x}, V_{y}, V_{z} that satisfy the following commutation rules:

$$
\begin{aligned}
{\left[J_{i}, V_{j}\right]=i \hbar \sum_{k} \varepsilon_{i j k} V_{k} \quad \varepsilon_{i j k} } & =1, i j k \text { cyclic } \\
& =-1, i j k \text { anti-cyclic } \\
& =0, \text { any two subscripts the same }
\end{aligned}
$$

This is shorthand for

$$
\begin{array}{lll}
{\left[J_{x}, V_{x}\right]=0} & {\left[J_{y}, V_{x}\right]=-i \hbar V_{z}} & {\left[J_{z}, V_{x}\right]=i \hbar V_{y}} \\
{\left[J_{x}, V_{y}\right]=i \hbar V_{z}} & {\left[J_{y}, V_{y}\right]=0} & {\left[J_{z}, V_{y}\right]=-i \hbar V_{x}} \\
{\left[J_{x}, V_{z}\right]=-i \hbar V_{y}} & {\left[J_{y}, V_{z}\right]=i \hbar V_{x}} & {\left[J_{z}, V_{z}\right]=0}
\end{array}
$$

It is convenient to use

$$
V_{ \pm}=V_{x} \pm i V_{y} \quad V_{x}=\frac{1}{2}\left(V_{+}+V_{-}\right) ; \quad V_{y}=\frac{1}{2 i}\left(V_{+}-V_{-}\right) .
$$

Selection Rules for m

Consider the commutators involving J_{z}, take matrix elements of the commutators:
a) $\left[J_{z}, V_{z}\right]=0$
$\left\langle j^{\prime} m^{\prime}\right| J_{z} V_{z}-V_{z} J_{z}|j m\rangle=\left\langle j^{\prime} m^{\prime}\right| m^{\prime} \hbar V_{z}-V_{z} m \hbar|j m\rangle=\hbar\left(m^{\prime}-m\right)\left\langle j^{\prime} m^{\prime}\right| V_{z}|j m\rangle$
Thus $\left\langle j^{\prime} m^{\prime}\right| V_{z}|j m\rangle=0$ unless $m^{\prime}=m, \Delta m=0$
b) $\left[J_{z}, V_{+}\right]=\left[J_{z}, V_{x}+i V_{y}\right]=i \hbar V_{y}+i\left(-i \hbar V_{x}\right)=\hbar V_{+}$
$\left\langle j^{\prime} m^{\prime}\right| J_{z} V_{+}-V_{+} J_{z}|j m\rangle=\hbar\left\langle j^{\prime} m^{\prime}\right| V_{+}|j m\rangle$.
or
$\hbar\left(m^{\prime}-m-1\right)\left\langle j^{\prime} m^{\prime}\right| V_{+}|j m\rangle=0$
$\left\langle j^{\prime} m^{\prime}\right| V_{+}|j m\rangle=0$ unless $m^{\prime}-m=+1, \underline{\Delta m=+1}$
c) Similarly, $\left[J_{z}, V_{-}\right]=-\hbar V_{-}$and
$\left\langle j^{\prime} m^{\prime}\right| V_{-}|j m\rangle=0$ unless $m^{\prime}-m=-1, \underline{\Delta m=-1}$

Selection Rules for j

To find the selection rules for j, we want to examine commutators of $\underset{\sim}{V}$ with J^{2}. For this, some vector identities are useful. First we show
(1) $\underset{\sim}{J} \times \underset{\sim}{V}+\underset{\sim}{V} \times \underset{\sim}{J}=2 i \hbar \underset{\sim}{V}$.

This relation is another way to define a vector operator. It states that, because of the non-commuting algebra of quantum mechanics, $\underset{\sim}{J} \times \underset{\sim}{V} \neq$ $-\underset{\sim}{V} \times \underset{\sim}{J}$ as would hold for ordinary vectors.

0.0.1 Proof:

$$
\begin{aligned}
(\underset{\sim}{J} \times \underset{\sim}{V}+\underset{\sim}{V} \times \underset{\sim}{J})_{i} & =\sum_{j, k}\left(\varepsilon_{i j k} J_{j} V_{k}+\varepsilon_{i j \nmid k} V_{4} J_{i} \cdot J_{k k}\right) \quad \text { re-label via } j \leftrightarrow k \\
& =\sum_{j, k} \varepsilon_{i j k}\left(J_{j} V_{k}-V_{k} J_{j}\right) \quad \text { Then use } \varepsilon_{i j k}=-\varepsilon_{i j k} \\
& =\sum_{j, k} \varepsilon_{i j k}\left[J_{j}, V_{k}\right]=i \hbar \sum_{j k \ell} \varepsilon_{i j k} \varepsilon_{j k \ell} V_{\ell} \quad \begin{array}{l}
\text { using the definition } \\
\text { of a vector operator }
\end{array}
\end{aligned}
$$

Note $\varepsilon_{i j k} \varepsilon_{j k \ell}=\varepsilon_{i j k} \varepsilon_{\ell j k}$ as a cyclic permutation of subscripts leaves $\varepsilon_{i j k}$ unchanged.
Then

$$
\sum_{j, k} \varepsilon_{i j k} \varepsilon_{\ell j k}=2 \delta_{i \ell} \begin{aligned}
& \text { factor } 2 \text { appears because both odd-odd } \\
& \text { and even-even permutations give a } \\
& \text { contribution }
\end{aligned}
$$

So

$$
(\underset{\sim}{J} \times \underset{\sim}{V}+\underset{\sim}{V} \times \underset{\sim}{J})_{i}=2 i \hbar \sum_{\ell} \delta_{i \ell} V_{\ell}=2 i \hbar V_{i} \quad \text { Q.E.D. }
$$

Now we show
(2) $\left[J_{\sim}^{J}, \underset{\sim}{V}\right]=i \hbar(\underset{\sim}{V} \times \underset{\sim}{J}-\underset{\sim}{J} \times \underset{\sim}{V})$.

Proof:

$$
\begin{aligned}
{\left[J^{2}, V_{j}\right] } & =\sum_{i}\left[J_{i}^{2}, V_{j}\right] \\
& =\sum_{i}\left\{J_{i}\left[J_{i}, V_{j}\right]+\left[J_{i}, V_{j}\right] J_{i}\right\} \\
{\left[J^{2}, V_{j}\right] } & =i \hbar \sum_{i, k}\{J_{i} \underbrace{\varepsilon_{i j k}} V_{k}+\underbrace{\varepsilon_{i j k}} V_{k} J_{i}\} \\
& =i \hbar(-\underset{\sim}{J} \times \underset{\sim}{V}+\underset{\sim}{V} \times \underset{\sim}{J})_{j} \quad \text { Q.E.D. }
\end{aligned}
$$

Lecture \#27 Supplement \#1 $\quad \stackrel{\text { replace by }}{-\varepsilon_{j i k}} \stackrel{\text { replace by }}{\varepsilon_{j k i}}$
Page 27S(1)-17

It is convenient to define the operator

$$
\underset{\sim}{K} \equiv \frac{1}{2}(\underset{\sim}{V} \times \underset{\sim}{J}-\underset{\sim}{J} \times \underset{\sim}{V}) .
$$

This is Hermitian (since $\underset{\sim}{V}$ and $\underset{\sim}{J}$ are) and is a vector operator if $\underset{\sim}{V}$ is.
Then Equation (2) states

$$
\begin{equation*}
\left[J_{\sim}^{2}, \underset{\sim}{V}\right]=2 i \hbar \underset{\sim}{K} \tag{1}
\end{equation*}
$$

However, we can't yet use this commutator to get selection rules on $\underset{\sim}{V}$, since the matrix elements of the commutator $\underset{\sim}{K}$ would seem to bear no simple relation to those of $\underset{\sim}{V}$. We will find that selection rules can be obtained from an identity involving the double commutator,

$$
\begin{equation*}
\left[J_{\sim}^{2},\left[{\underset{\sim}{J}}^{2}, \underset{\sim}{V}\right]\right]=2 \hbar^{2}\left\{\underset{\sim}{J}{ }^{2} \underset{\sim}{V}-2(\underset{\sim}{J} \cdot \underset{\sim}{V}) \underset{\sim}{J}+\underset{\sim}{V} J_{\sim}^{2}\right\} . \tag{3}
\end{equation*}
$$

This can be proven by examining further the properties of $\underset{\sim}{K}$.

$$
\left[J^{2},\left[J_{\sim}^{2}, \underset{\sim}{V}\right]\right]=2 i \hbar[\underset{\sim}{J}, \underset{\sim}{K}] .
$$

Since $\underset{\sim}{K}$ is a vector operator, we have from (2) that

$$
\left[J_{\sim}^{2}, \underset{\sim}{K}\right]=i \hbar(\underset{\sim}{K} \times \underset{\sim}{J}-\underset{\sim}{J} \times \underset{\sim}{K}) .
$$

Also, from Equation (1) we have

$$
\underset{\sim}{J} \times \underset{\sim}{K}+\underset{\sim}{K} \times \underset{\sim}{J}=2 i \hbar \underset{\sim}{K} .
$$

Hence

$$
\begin{aligned}
\underset{\sim}{J} \times \underset{\sim}{K}-\underset{\sim}{K} \times \underset{\sim}{J} & =\underset{\sim}{J} \times \underset{\sim}{K}-(2 i \hbar \underset{\sim}{K}-\underset{\sim}{J} \times \underset{\sim}{K}) \\
& =2 i \hbar \underset{\sim}{K} .
\end{aligned}
$$

Also, from equation (1)

$$
\underset{\sim}{K} \equiv \frac{1}{2}(\underset{\sim}{V} \times \underset{\sim}{J}-\underset{\sim}{J} \times \underset{\sim}{V})=\underset{\sim}{V} \times \underset{\sim}{J}-i \hbar \underset{\sim}{V} .
$$

Thus,

$$
\begin{aligned}
& \underset{\sim}{J} \times \underset{\sim}{K}=J \times(\underset{\sim}{V} \times \underset{\sim}{J})-i \hbar(\underset{\sim}{J} \times \underset{\sim}{V}) \\
& (\underset{\sim}{J} \times \underset{\sim}{K})_{i}=\underbrace{\sum_{j, k} \varepsilon_{i j k} J_{j}(\underset{\sim}{V} \times \underset{\sim}{J})_{k}}-i \hbar(\underset{\sim}{J} \times \underset{\sim}{V})_{i} \\
& \sum_{j k \ell m} \varepsilon_{i j k} J_{j} \varepsilon_{k \ell m} V_{\ell} J_{m} \text { shift to } \varepsilon_{\ell m k}=\varepsilon_{k \ell m} \text { since cyclic } \\
& \text { unchanged } \\
& \sum_{j \ell m} \mid\left(\delta_{i \ell} \delta_{j m}-\delta_{i m} \delta_{j \ell}\right) J_{j} V_{\ell} J_{m}=\sum_{j}\left(J_{j} V_{i} J_{j}-J_{j} V_{j} J_{i}\right) \\
& =\sum_{j}\left(J_{j} J_{j} V_{i}-J_{j}\left[J_{j}, V_{i}\right]-J_{j} V_{j} J_{i}\right) \\
& =J^{2} V_{i}-\underbrace{-\sum_{j \ell} J_{j} i \hbar \varepsilon_{j i \ell} V_{\ell}-(\underset{\sim}{J}-\underset{\sim}{V}) J_{i}} \\
& +i \hbar \sum_{j \ell} J_{j} \varepsilon_{i j \ell} V_{\ell}=i \hbar(\underset{\sim}{J} \times \underset{\sim}{V})_{i} . \\
& \text { replace by }-\varepsilon_{i j \ell} \text {, } \\
& \text { a non-cyclic } \\
& \text { permutation }
\end{aligned}
$$

So we find

$$
(\underset{\sim}{J} \times \underset{\sim}{K})_{i}={\underset{\sim}{J}}^{2} V_{i}-(\underset{\sim}{J} \cdot \underset{\sim}{V}) J_{i}+\underset{i \hbar}{i}(J \times V)_{i}-i \hbar(J \times V)_{i}
$$

or

$$
\underset{\sim}{J} \times \underset{\sim}{K}={\underset{\sim}{J}}^{2} \underset{\sim}{V}-(\underset{\sim}{J} \cdot \underset{\sim}{V}) \underset{\sim}{J} .
$$

Now we can use these results to simplify the double commutator,

$$
\begin{aligned}
{\left[{\underset{\sim}{2}}^{2},[\underset{\sim}{J}, \underset{\sim}{V}]\right] } & =2 i \hbar\left[{\underset{\sim}{J}}^{2}, \underset{\sim}{K}\right]=(2 i \hbar)(i \hbar)(-1)(2 \underset{\sim}{J} \times \underset{\sim}{K}-2 i \hbar \underset{\sim}{K}) \\
& =2 \hbar^{2}(2 \underset{\sim}{J} \times \underset{\sim}{K}-2 i \hbar \underset{\sim}{K}) \\
& =2 \hbar^{2}\{2 J^{2} \underset{\sim}{V}-2(\underset{\sim}{J} \cdot \underset{\sim}{V})-\underbrace{\left[J^{2}, \underset{\sim}{V}\right.}
\end{aligned}
$$

$$
J^{2} \underset{\sim}{V}-\underset{\sim}{V} J^{2}
$$

and finally,

$$
\left[\underset{\sim}{J},\left[{\underset{\sim}{J}}^{2}, \underset{\sim}{V}\right]\right]=2 \hbar^{2}\left\{J^{2} \underset{\sim}{V}-2(\underset{\sim}{J} \cdot \underset{\sim}{V}) \underset{\sim}{J}+\underset{\sim}{V} J^{2}\right\} \quad \text { Q.E.D. }
$$

Now we can obtain selection rules by taking matrix elements of this relation. Consider two cases:

Case I: Elements diagonal in j: Wigner-Eckart Theorem

$$
j m^{\prime}\left|\left[J^{2}, A\right]\right| j m=\left\langle j m^{\prime}\right| j(j+1) A-A j(j+1)|j m\rangle=0
$$

for any operator A. Thus,

$$
j m^{\prime}\left|\left[J^{2},\left[J^{2}, V\right]\right]\right| j m=0=2 \hbar^{2} \quad j m^{\prime}\left|J^{2} \underset{\sim}{V}-2(\underset{\sim}{J} \cdot \underset{\sim}{V}) \underset{\sim}{J}+\underset{\sim}{V} J^{2}\right| j m
$$

or

$$
\begin{aligned}
\hbar^{2} j(j+1) j m^{\prime}|\underset{\sim}{V}| j m & -\underbrace{j m^{\prime}|(\underset{\sim}{J} \cdot \underset{\sim}{J}) \underset{\sim}{J}| j m}=0 \\
& =\sum_{j^{\prime \prime} m^{\prime \prime}} j m^{\prime} \mid\left(\underset{\sim}{J} \cdot \underset{\sim}{V}\left|j^{\prime \prime} m^{\prime \prime} \quad j^{\prime \prime} m^{\prime \prime}\right| \underset{\sim}{J} \mid j m .\right.
\end{aligned}
$$

The operator $(\underset{\sim}{J} \cdot \underset{\sim}{V})$ is a scalar with respect to $\underset{\sim}{J}$ and therefore diagonal in both m and j, so that $j^{\prime \prime}=j$ and $m^{\prime \prime}=m^{\prime}$, and its matrix elements are independent of m. Hence we find

$$
j m^{\prime}|\underset{\sim}{V}| j m=\frac{j|\underset{\sim}{J} \cdot \underset{\sim}{V}| j}{\hbar^{2} j(j+1)} j m^{\prime}|\underset{\sim}{V}| j m
$$

This is the Wigner-Eckart theorem for a vector operator.

Powell \& Craseman, page 371

$$
j m^{\prime}|\underset{\sim}{V}| j m=\frac{j|\underset{\sim}{J} \cdot \underset{\sim}{V}| j}{j(j+1) \hbar^{2}} \quad j m^{\prime}|\underset{\sim}{J}| j m
$$

Suppose $\underset{\sim}{V}$ precesses around $\underset{\sim}{J}$. The time averaged value of the component normal to J is zero. The time average of $\underset{\sim}{V}$ is therefore parallel to $\underset{\sim}{J}$ and has magnitude

$$
\frac{J \cdot V}{|J|}
$$

Hence, on this model, the average is

$$
\underset{\sim}{V}=\frac{\underset{\sim}{J} \cdot \underset{\sim}{V}}{J^{2}} \underset{\sim}{J}=\frac{(J \cdot V)}{|J|} \frac{\underset{\sim}{J}}{|J|}
$$

The theorem is very useful, as it states that, for any vector operator $\underset{\sim}{V}$, the matrix elements diagonal in j are simply proportional to the corresponding matrix elements of $\underset{\sim}{J}$ itself. The proportionality constant, $c_{0}(j)=$ $j|(\underset{\sim}{J} \cdot \underset{\sim}{V})| j /(\hbar j(j+1))$ is the same for all m-states. Therefore, we have via the Wigner-Eckart Theorem:

$$
\begin{aligned}
\langle j, m+1| V_{+}|j m\rangle & =c_{0}(j)[j(j+1)-m(m+1)]^{1 / 2} \\
\langle j m| V_{z}|j m\rangle & =c_{0}(j) m \\
\langle j, m-1| V_{-}|j m\rangle & =c_{0}(j)[j(j+1)-m(m-1)]^{1 / 2}
\end{aligned}
$$

with $c_{0}(j)=\left\langle\alpha^{\prime} j\|V\| \alpha j\right\rangle$ a reduced matrix element. In particular, we note that all matrix elements of $\underset{\sim}{V}$ between $j=0$ states vanish.

Case II: Elements non-diagonal in \mathbf{j}

Now consider $j^{\prime} \neq j$, again take matrix elements of Equation (3). LHS gives

$$
\begin{aligned}
j^{\prime} m^{\prime}\left|\left[J^{2},\left[J^{2}, V\right]\right]\right| j m & =j^{\prime} m^{\prime}\left|J^{2}\left(J^{2} V-V J^{2}\right)-\left(J^{2} V-V J^{2}\right) J^{2}\right| j m \\
& =\left\{j^{\prime 2}\left(j^{\prime}+1\right)^{2}-2 j(j+1) j(j+1)+j^{2}(j+1)^{2}\right\}\left\langle j^{\prime} m^{\prime}\right| V|j m\rangle .
\end{aligned}
$$

RHS gives

$$
\begin{aligned}
& 2 h^{2}\left\langle j^{\prime} m^{\prime}\right| J^{2} \underset{\sim}{V}-\underbrace{2(\underset{\sim}{J} \cdot \underset{\sim}{V}) \underset{\sim}{J}}+\underset{\sim}{V} J^{2}|j m\rangle=2 \hbar^{2}\left\{j^{\prime}\left(j^{\prime}+1\right)+j(j+1)\right\} \quad j^{\prime} m^{\prime}|\underset{\sim}{V}| j m \\
& \text { drops out as } j^{\prime} m^{\prime}|J| j m=0 \text {, because } j^{\prime} \neq j \text {. }
\end{aligned}
$$

Equating LHS $=$ RHS and rearranging gives

$$
\left\{\left(j^{\prime}-j\right)^{2}-1\right\} \underbrace{\left\{\left(j^{\prime}+1+1\right)^{2}\right.}-1\} \quad j^{\prime} m^{\prime}|\underset{\sim}{V}| j m=0
$$

This factor >0 since $j^{\prime} \neq j$ and $j^{\prime} \geq 0, j \geq 0$
Therefore

$$
j^{\prime} m^{\prime}|\underset{\sim}{V}| j m=0
$$

unless $\left(j^{\prime}-j\right)^{2}-1=0$ or $j^{\prime}=j \pm 1$.
The complete selection rules for any vector operator thus are:

$$
\begin{gathered}
j^{\prime} m^{\prime}|\underset{\sim}{V}| j m \quad=0 \text { unless } \\
j^{\prime}=j \neq 0 \quad \text { or } \quad j^{\prime}=j \pm 1
\end{gathered}
$$

and, for any j^{\prime}, j

$$
m^{\prime}=m \text { or } m^{\prime}=m \pm 1 .
$$

We have already found (page 19) the matrix element for $j^{\prime}=j$. Now we will do $j^{\prime}=j+1$.

$$
\begin{aligned}
\text { Consider }\left[J_{+}, V_{+}\right]= & {\left[J_{x}+i J_{y}, V_{x}+i V_{y}\right] } \\
= & {\left[J_{x}, V_{x}\right]+i\left[J_{x}, V_{y}\right]+i\left[J_{y}, V_{x}\right]-\left[J_{y}, V_{y}\right] } \\
& \downarrow \\
0 & \downarrow \\
\downarrow & \downarrow \\
= & 0 .
\end{aligned}
$$

Take matrix element and use $\langle j, m+1| J_{+}|j, m\rangle=\hbar[j(j+1)-m(m+1)]^{1 / 2}$

$$
=\hbar[(j+m+1)(j-1)]^{1 / 2}
$$

$$
\begin{aligned}
0 & =\langle j+1, m+1|\left(J_{+} V_{+}-V_{+} J_{+}|j, m-1\rangle\right. \\
& =\langle j+1, m+1| J_{+}|j+1, m\rangle\langle j+1, m| V_{+}|j, m-1\rangle \\
& -\langle j+1, m+1| V_{+}|j m\rangle\langle j m| J_{+}|j, m-1\rangle
\end{aligned}
$$

where we use the $\Delta m=+1$ selection rule for V_{+}and J_{+}.
This provides a recurrence relation for the matrix elements.

$$
\begin{aligned}
\langle j+1, m+1| J_{+}|j+1, m\rangle\langle j+1, m| V_{+}|j, m-1\rangle=\langle j & \left.+1, m+1\left|V_{+}\right| j m\right\rangle \\
& \times\langle j m| J_{+}|j, m-1\rangle \\
\hbar[(j=m+1)(j+m+2)]^{1 / 2} \quad & \hbar[(j=m+1)(j+m)]^{1 / 2}
\end{aligned}
$$

So

$$
\frac{\langle j+1, m| V_{+}|j, m-1\rangle}{(j+m)^{1 / 2}}=\frac{\langle j+1, m+1| V_{+}|j, m\rangle}{(j+m+2)^{1 / 2}}
$$

This takes on a simple pattern if we divide both sides by $(j+m+1)^{1 / 2}$:

$$
\begin{aligned}
-c_{+}(j, m) & \equiv \frac{\langle j+1, m| V_{+}|j, m-1\rangle}{[(j+m+1)(j+m)]^{1 / 2}}=\frac{\langle j+1, m+1| V_{+}|j, m\rangle}{[(j+m+2)(j+m+1)]^{1 / 2}} \\
& =-c_{+}(j, m+1)
\end{aligned}
$$

Since m was arbitrary, $c_{+}(j, m)=c_{+}(j, m+1)=c_{+}(j$, any other $m)$ so the ratio $c_{+}(j)$ must be independent of m. The m-independence of the matrix element is therefore given by

$$
\langle j+1, m+1| V_{+}|j, m\rangle=-c_{+}(j)[(j+m+2)(j+m+1)]^{1 / 2}
$$

with $c_{+}(j)=\alpha^{\prime}, j+1\|\underset{\sim}{V}\| \alpha, j$ a reduced matrix element that depends on the detailed nature of $\underset{\sim}{V}$, not merely on its vector character. However, it can be evaluated if the matrix element of $\underset{\sim}{V}$ can be evaluated for any single m value, e.g., $m=j$ or $m=0$, for which the evaluation is often simpler than in the general case.

Now determine the $j^{\prime}=j+1$ elements of V_{Z} using the above result for V_{+}. Start with

$$
\begin{array}{ll}
-2 \hbar V_{Z}=\left[J_{-}, V_{+}\right] & \begin{array}{l}
\text { which expresses } V_{Z} \text { in terms of } J_{-} \text {and } V_{+} \\
\text {whose matrix elements we now know. }
\end{array}
\end{array}
$$

$$
\begin{aligned}
-2 \hbar\langle j+1, m| V_{Z}|j, m\rangle= & \langle j+1, m| J_{-}|j+1, m+1\rangle\langle j+1, m+1| V_{+}|j, m\rangle \\
& -\langle j+1, m| V_{+}|j, m-1\rangle\langle j, m-1| J_{-}|j, m\rangle \\
= & \hbar[(j+m+2)(j-m+1)]^{1 / 2}\left(-c_{+}(j)\right)[(j+m+2)(j+m+1)]^{1 / 2} \\
& -\hbar\left(-c_{+}(j)\right)[(j+m+1)(j+m)]^{1 / 2}[(j+m)(j-m+1)]^{1 / 2} \\
= & -\hbar c_{+}(j)[(j+m+2)-(j+m)][(j+m+1)(j-m+1)]^{1 / 2} \\
= & -2 \hbar c_{+}(j)[(j+m+1)(j-m+1)]^{1 / 2}
\end{aligned}
$$

Thus,

$$
\langle j+1, m| V_{Z}|j, m\rangle=c_{+}(j)[(j+m+1)(j-m+1)]^{1 / 2}
$$

Similarly, from

$$
\hbar V_{-}=\left[J_{-}, V_{Z}\right]
$$

we find

$$
\langle j+1, m-1| V_{-}|j, m\rangle=c_{+}(j)[(j-m+2)(j-m+1)]^{1 / 2}
$$

Results for $j^{\prime}=j-1$ are derived in analogous fashion and involve a third reduced matrix element, $c_{-}(j)=\left\langle\alpha^{\prime}, j-1\|V\| \alpha, j\right\rangle$. Hence the m-dependence of a scalar or vector operator follows from its scalar or vector character only. Classification of operators by their transformation properties under rotation can be extended to tensors of any rank. In each case the form of the matrix elements is determined except for factors that depend on α and j.

SUMMARY: Non-zero Matrix Elements of a Vector Operator, $\underset{\sim}{V}$

$$
\begin{aligned}
\Delta j=+1 \quad\langle j+1, m \pm 1| V_{ \pm}|j m\rangle & =\mp c_{+}(j)[(j \pm m+2)(j \pm m+1)]^{1 / 2} \\
\langle j+1, m| V_{Z}|j m\rangle & =c_{+}(j)[(j+m+1)(j-m+1)]^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
\Delta j=0 \quad\langle j, m \pm 1| V_{ \pm}|j m\rangle & =c_{0}(j)[(j \pm m+1)(j \mp m)]^{1 / 2} \\
\langle j m| V_{Z}|j m\rangle & =c_{0}(j) m
\end{aligned}
$$

$$
\begin{aligned}
\Delta j=-1 \quad\langle j-1, m \pm 1| V_{ \pm}|j m\rangle & = \pm c_{-}(j)[(j \mp m)(j \mp m-1)]^{1 / 2} \\
\langle j-1, m| V_{Z}|j m\rangle & =c_{-}(j)[(j-m)(j+m)]^{1 / 2}
\end{aligned}
$$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ These notes were prepared by Professor Dudley Herschbach of Harvard University

