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Lecture 27 Supplement #3:  A User’s Guide to Angular 
Momentum Theory 

The wavefunctions for both atoms and molecules in the gas phase may be factored into a 
molecule-specific radial part and a universal angular part. An enormously powerful one-
size-fits-all theory exists for deriving the universal angular part of molecular basis-states and 
eigen-states, and calculation of the angular part of all matrix elements.  This lecture is an 
attempt to provide a user’s guide to angular momentum theory. It is adapted from pages 152-
175 of Rotational Spectroscopy of Diatomic Molecules, John Brown and Alan Carrington, 
Cambridge University Press, 2003, and Angular Momentum, Richard N. Zare, Wiley, 1988, 
pages 180-200.  The outline is: 

• Commutation Rule definition of an angular momentum 
• Matrix elements of the magnitude (j2) and components (jx, jy, jz, j+, j–) of a single 

angular momentum operator 
• Uncoupled and Coupled representations for two angular momenta, j1 and j2, coupled 

to make a total angular momentum, j=j1+j2 

• Vector-coupling, Clebsch-Gordan, and 3-j coefficients for the transformation between 
coupled and uncoupled representations 

• Commutation rule definition of a spherical tensor operator, T µ 
k (k rank, µ component, 

–k ≤ µ ≤ k: scalar k=0, vector k=1, and k=2 2nd rank tensor) 
• Combinations of three or more angular momenta to form composite basis states: 6-j 

and 9-j coefficients 
• Combination of two or more angular momenta to form a composite spherical tensor 

operator, T µ 
k (A,B) 

• Wigner-Eckart Theorem for matrix elements of spherical tensor operators 
• Wigner-Eckart Theorem for matrix elements of composite spherical tensor operators. 

I will illustrate each step with a worked example. 

Commutation Rule Definition of an Angular Momentum 

[Ji, Jj] = i! ∑εijk Jk 
k 

is the universal signature of any operator that qualifies for the name “angular momentum.” 

* This angular momentum commutation rule can be derived from the most important 
commutation rule in Quantum Mechanics 

p ⎤⎦ = i!⎡⎣ x̂, ˆ x 

1
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* This angular momentum commutation rule is useful in deriving all of the properties of 
Ĵ 2 , Ĵ , Ĵ , Ĵ , Ĵ 

± = Ĵ ± iĴ acting on any simultaneous eigenstate of Ĵ 2  and Ĵ , :JM Jx y z x y z 

Ĵ 2 JM = !2 J (J +1) JM 

Ĵ JM = !M JM z 

JM = ! ⎡⎣J (J +1) − M ( M ±1)⎤⎦
1/2 

JM ±1Ĵ 
± 

1
Ĵ JM = ( Ĵ + Ĵ 

− ) JM x 2 + 

! 1/2 
= {⎡⎣J (J +1) − M ( M +1)⎤⎦ JM +1 + ⎡⎣J (J +1) − M ( M −1)⎤⎦

1/2 
JM −1 }2 

Ĵ JM JM = 
−i (Ĵ + Ĵ )y 2 + − 

! 1/2 
= (−i){⎡⎣J(J +1) − M(M +1)⎤⎦ JM +1 − ⎡⎣J(J +1) − M(M −1)⎤⎦ 

1/2 
JM −1 }2 

* This commutation rule is also surprising because it requires that 

Ĵ × Ĵ = i!Ĵ ≠ 0 

because, classically, the cross product of any vector with itself is zero. 

* It is more surprising that, while orthogonal linear translations commute, angular 
translations do not commute. 

Transformation between Coupled and Uncoupled Representations 

We used the Ĵ 
± 

plus orthogonality method to derive the transformation between a coupled 
representation 

e.g. Ĵ = L̂ + Ŝ JLSM J 

and an uncoupled representation: |LMLSMSñ. More generally, one knows that there must exist 
a unitary transformation between two complete same-dimension basis set representations, as 
is true for |JLSMJñ and |LMLSMSñ, where the same (L,S) dimension for each basis set is 
(2L + 1)(2S + 1). 

The ladders plus orthogonality method is extremely laborious and inelegant, but it is based 
on easily remembered matrix elements. There is a much better way, based on complete tables 

2
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of transformation coefficients between coupled and uncoupled representations. The 
relationship between the coupled and uncoupled representations is obtained via 
completeness: 

.JLSM J = ∑ LM LSMS LM LSMS JLSM J 
ML ,MS 

Two simplifications may be made 

LM LSMS ≡ LM L SMS 

and, based on ML + MS = MJ, the double-sum over ML,MS may be replaced by a single sum 

S 

.JLSM J = ∑ L, M L = M J − MS ,SM J L, M L = M J − MS ,SM J JLSM J 
MS =− S 

The factor on the RHS is called a vector coupling coefficient. Since the 
coupled«uncoupled transformation is unitary [U–1 = U†], the inverse transformation is given 
by 

S * 
L, M L = M J − MS ,SMS = ∑ JLS , M J = M L + MS L, M L = M J − MS ,SMS JLS , M J = M L + MS . 

MS =− S 

The transformation coefficient in the above equation is the conjugate transform of the 
transformation coefficient in the previous equation. These vector coupling coefficients are 
typically expressed (and tabulated) in a slightly more compact form as Clebsch-Gordan 
coefficients. 

S 

JLSM J = ∑ LM L SMS LM LSMS JM J 
MS =− S 

and 

.LM L 
SMS = JM J JM J LM LSMS 

J = L−S 
M J =M L +M S 

L+S 

∑ 

The factor áLML,SMS|JMJñ is the Clebsch-Gordan coefficient. It has been simplified by 
suppression of the redundant L,S quantum numbers in the ket.  The MJ quantum number 
could have been suppressed as well because MJ = ML + MS. 

3
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A more compact and useful expression of the transformation between the coupled and 
uncoupled representations is given by the Wigner 3-j symbols. Formally, one can think of 
the 3-j symbol as expressing the coupling of three angular momenta { |J,MJñ, |LMLñ and 
|SMSñ} to make a “scalar” quantity, symbolized by |0,0ñ (see Brown and Carrington, page 
154). One obtains a relationship between the 3-j symbol and a Clebsch-Gordan coefficient 

⎛ ⎞L S J 
= (−1)L−S+ MJ (2J +1)1/2 LM LSMS JM J 

CLEBSCH-GORDAN 
⎜
⎝ 

⎟
⎠ 

.
M L MS M J 

Thus 3-j 
⎛ ⎞ 

= (−1)L−S+ MJ (2J +1)1/2 L S J .JM J (LS) LM LSMS∑ ⎜ ⎟ 
ML ,MS ⎝ M L MS − M J ⎠ 

ML + MS = MJ 

The –MJ in the 3-j coefficient is initially puzzling, but it expresses the requirement that 
ML + MS = MJ or that the three M quantum numbers in the 3-j symbol must sum to zero: 

ML + MS – MJ = 0. 

Using a computer to compute and use 3-j coefficients requires significantly less time and 
effort than for you to look up a tabulated 3-j coefficient. 

What is so great about 3-j coefficients? (i) the three angular momenta are treated 
symmetrically; (ii) the mi and associated ji appear together in a single column of the 3-j 
symbol; (iii) an odd interchange of columns (123 ® 213 but not an even interchange 
123 ® 312) is obtained by 

⎛ 
⎜
⎜⎝ 

j1 j2 j3 

m1 m2 −m3 

⎛⎞ ⎞j2 j1 j3⎟
⎟⎠ 
= (−1) j1+ j2 + j3 ⎜

⎜⎝ 
⎟
⎟⎠−m3m2 m1 

and a sign reversal of all m in the bottom row is given by 

⎛ ⎛⎞ ⎞ 
⎟
⎟⎠ 

j1 j2 j3 j1 j2 j3 

−m1 −m2 m3 

⎟
⎟⎠ 
= (−1) j1+ j2 + j3⎜

⎜⎝ 
⎜
⎜⎝−m3m1 m2 

and the general transformation is 

⎛ ⎞j1 j2 j3 

m1 m2 −m3 

)1/2 
= (−1) j1− j2 +m3 (2 j3 +1j3m3 ( j1 j2 ) ∑ j1m1 j2 .m2⎜

⎜⎝ 
⎟
⎟⎠m1,m2 =m3−m1 

The inverse transformation (from coupled to uncoupled) is given by 

revised 8/17/20 9:17:00 AM 
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j1+ j2 ⎛ ⎞
)1/2 j1 j2 j3= ∑ (−1) j2 − j1−m3 (2 j3 +1 ⎜ ⎟ .j1m1 j2m2 j1 j2 j3m3⎜ m1 m2 −m3 ⎟j3 = j1− j2 ⎝ ⎠ 

m3 =m1+m2 

Notice that the same 3-j symbol appears in the coupled®uncoupled and uncoupled®coupled 
representations, but the sum is carried out over m1(m2 = m3 – m1) in the uncoupled«coupled 
transformation and over j3 in the coupled®uncoupled transformation. 

Example of coupled to uncoupled transformation 

Suppose we are interested in the Zeeman effect for the J,MJ components of a 3F (S = 1, L = 
3) state. We know that, at zero-field, the 3F state has J = 4, 3, 2 spin-orbit components and 
that 

1 = AL ⋅S = A⎡⎣J (J +1) − L(L +1) − S(S +1)⎤⎦HSO 2 

because J2 = (L + S)2 thus L ⋅S = 
1 (J2 − L2 − S2 )
2 

(0) + 
1 [ ] (0) − 4 AE3 F2 

= E3 F
A 6 −12 − 2 = E3 F2 

(0) + 
1 (0) − AE3 F3 

= E3 F
A[12 −12 − 2] = E3 F2 

(0) + 
1 [ ] (0) + 3AE3 F4 

= E3 F
A 20 −12 − 2 = E3 F2 

We need the uncoupled representation to compute the Zeeman effect for each of the J,MJ 
levels. In the uncoupled representation HZeeman = –!µ0Bz(Lz + 2Sz) (µ0 is the Bohr 
magneton). We want to know what Lz and Sz do to each |LSJMJñ coupled basis state. Here 
are a few examples of coupled®uncoupled |LSJMJñ®|LMLSMSñ transformations: 

3144 = a 3311 

3143 = b 3310 + c 3211 

3133 = d 3310 + e 3211 

3132 = f 331−1 + g 3210 + h 3111 

3122 = i 331−1 + j 3210 + k 3111 

3121 = l 321−1 + m 3110 + n 3011 
where the mixing coefficients a–n are evaluated using tabulated 3-j coefficients. 

5
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a = 
⎜ 

⎛ 
⎜
⎝ ⎟ 

⎛⎞ 
⎟
⎠ 

⎞L S J 3 1 4 = 1.000 = ⎜⎝ ⎟⎠M M −M 3 1 −4L S J 

L + 2S = 5! for 3F M = 4 
z z 4 J 

⎛ ⎞3 1 4b = 
⎠⎟ 
= 0.500 

⎝⎜ 3 0 −3 

⎛ ⎞3 1 4 = 0.866 c = ⎜⎝ ⎟⎠2 1 −3 

L + 2S = 3.75! for 4F M = 3 
z z 3 J 

⎛ ⎞3 1 3d = 
⎠⎟ 
= 0.866 

⎝⎜ 3 0 −3 

⎛ ⎞3 1 3 = −0.500 e = ⎜⎝ ⎟⎠2 1 −3 

L + 2S = 3.25! for 3F M = 2 
z z 3 J 

⎛ ⎞3 1 3f = 
⎠⎟ 
= 0.500 

⎝⎜ 3 −1 −2 

⎛ ⎞3 1 3g = 
⎠⎟ 
= 0.577 

⎝⎜ 2 0 −2 

⎛ ⎞3 1 3h = = −0.645 
⎝⎜ 1 1 −2 ⎠⎟ 

L + 2S = 2.16! for 3F M = 2 
z z 3 J 

⎛ ⎞3 1 2i = 
⎠⎟ 
= 0.845 

⎝⎜ 3 −1 −2 

⎛ ⎞3 1 2j = 
⎠⎟ 
= −0.488 

⎝⎜ 2 0 −2 

⎛ ⎞3 1 2k = 
⎠⎟ 
= 0.218 

⎝⎜ 1 1 −2 

L + 2S = 1.333! for 3F M = 2 
z z 2 J 

⎛ ⎞3 1 2l = 
⎠⎟ 
= 0.690 

⎝⎜ 2 −1 −1 

⎛ ⎞3 1 2m = 
⎠⎟ 
= −0.617 

⎝⎜ 1 0 −1 

6
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⎛ ⎞3 1 2 = 0.378 n = ⎜⎝ ⎟⎠0 1 −1 

L + 2S = 0.666! for 3F M = 1 
z z 2 J 

These results are consistent with a formula given on page 381 of Condon and Shortley.  
HZeeman = γB !M Jz gJLS 

J (J +1) − L(L +1) + S(S +1) = 1+gJLS 2J (J +1) 

Definition of Spherical Tensor Operators 

We know how to use 3-j coefficients to couple two angular momentum operators to make a 
third angular momentum.  We define an angular momentum operator by a commutation rule 

⎡⎣ Ĵ 
i , Ĵ 

j 
⎤⎦ = i!∑εijk Jk . 

k 

If we can re-express all angle-dependent operators as a sum of angular momenta-like 
operators (irreducible tensor operators), then we can use 3-j-like coefficients to evaluate the 
angle dependent factors of all matrix elements. There is also a special feature of the H 
matrix. In field-free space H acts like a scalar operator 

1/2 
T̂k k⎡⎣ Ĵ 

± 
,T̂ 

q 
⎤⎦ = ±! ⎡⎣(k ∓ q)(k ± q +1)⎤⎦ q+1 

k k⎡⎣ Ĵ ,T̂ ⎤⎦ = !qT̂ 
z q q 

where k is the rank (k = 0 is Scalar, k = 1 is vector, k = 2 is 2nd rank tensor) and q is the 
component (–k ≤ q ≤ k).  For a Scalar Operator (q = 0, k = 0) the commutation rule definition 
tells us that 

0⎡⎣ Ĵ 
± 
,T̂0 

⎤⎦ = 0 
0⎡⎣ Ĵ 

z ,T̂0 
⎤⎦ = 0 

0which means that T̂0 
acts like an M-independent constant 

0JM J ′M ′ = cJT̂0 δ JJ ′δMM ′ 

with exclusively diagonal matrix elements in the J,MJ basis set. For a Vector Operator, 

revised 8/17/20 9:17:00 AM 
7



      
 

    

 

 

 

 
 

 

  
  

 

 

 
  

 

 
  

 

   

   

 

5.73 Fall 2018 Lecture #27S3 page 8 

V̂0 = V̂ 
z 

= ∓2−1/2 V̂ 
± (V̂ 

x ± iV̂ 
y ) 

⎡⎣J ,V0 ⎤⎦ = !T 1 = !V z q q 

⎡⎣Jz ,V± 
⎤⎦ = !V±1 

⎡⎣J± 
,V0 ⎤⎦ = ±! ⎡⎣∓(1±1)⎤⎦

1/2 
V± 

⎡⎣J± 
,V+ 

⎤⎦ = ±![(1∓1)(q ±1+1)]1/2V0 

⎡⎣J± 
,V− 

⎤⎦ = ±! ⎡⎣(1±1)(1∓1+1)⎤⎦ 
1/2 

V0 

Example 

The spherical tensor classification of operators depends on the choice of the angular 
momentum operator used in the classification commutation rules.  For example, the spin-
orbit operator, AL·S, is a scalar operator with respect to J but a vector operator with respect 
to both L and S 

⎡⎣J
2 ,AL ⋅ S⎤⎦ = A ⎡J2 ⎤⎣ ⎦,L ⋅S 

⎡
⎣ 
⎡
⎣ 
⎡
⎣ 

1
L ⋅S = (J2 − L2 − S2 )

2 

⎡J2,AL ⋅ S⎦⎤ = 
1 
A ⎡J2,J2 − L2 − S2 

⎦⎤ = 0⎣ ⎣2 

⎤⎦ = A J 

= A L 

= A S 

⎡⎣ ⎤
⎦J ,AL ⋅ S ,L S + L S + L S 

z x x y y zz z 

⎤
⎦,L S + L S + L S 

z x x y y z z 

⎤
⎦,L S + L S + L S 

z x x y y z z 

( − L S )+ (L S − L S )x y x y y x 
= i!A ⎡

⎣ 
⎤
⎦L S 

y x 

= 0 
We knew this had to be true because J2, Jz, L2, and S2 are a complete set of commuting 
operators. But now consider [Lz, AL·S] and [Sz, AL·S] individually. 

⎡⎣L ,AL ⋅S⎤⎦ = i!A (L S − L S ) ≠ 0 
z y x x y 

⎡⎣S 
z 
,AL ⋅S⎤⎦ = i!A (L 

x 
S 
y 
− L 

y 
S 
x ) ≠ 0 

It is also true that L and S are scalar operators with respect to each other, because they do not 
operate on the same coordinates. 

8
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Example: Tensor Operators are “like” Angular Momenta 

We can use the tensor operator commutation rule definitions 

⎡⎣J ,T k ⎤⎦ = !qT k 
z q q 

k k⎡⎣J± 
,T ⎤⎦ = ±! ⎡⎣(k ∓ q)(k ± q +1)⎤⎦ 

1/2 
T q q±1 

to construct operators that “look like” operators with specified angular momentum 
characteristics with respect to any classifying angular momentum. This means that we can 
use angular momentum coupling methods to calculate matrix elements in the classifying 
operator’s basis set, e.g. |j,mjñ. This is the basis for the Wigner-Eckart theorem 

⎛ ⎞j k j′ 
j Tk(A) .n, j,m

j 
Tk(A) n′, j′,m′ 

j 
= (−1)

j−m ⎜ ⎟ = n,m n′, j′ 
q ⎜ −m q m′ ⎟⎝ j j ⎠ 

kThe 3-j coefficient describes the angular momentum-like coupling of án,j,mj|, T (A), and
q 

|n¢,j¢,m¢jñ, and á n,j||Tk(A)|| n ¢j¢ñ is called a “reduced matrix element” because in it, none of 
the projection quantum numbers are specified for the bra, the ket, or the tensor operator.  All 
information about the projection quantum numbers is expressed in the 3-j coefficient!  

kT (A) means that the components of operator A are arranged in spherical tensor form. For q 

example, the relationships between Cartesian tensor and spherical tensor form are as follows: 

j2 is a scalar with respect to j 

T0
0(j) = j2 

! 
j = îj + ĵj + k̂j is a vector with respect to j

x y k 

1 ( ) = −2−1/2 ) = −2−1/2 jT1 j (j + ijx y + 

1T0 ( )j = j 
1 = 2−1/2 j− 

.T−1 ( )j = 2 
z 

−1/2 (jx − ijy ) 
The 9 products ji,jj are components of a scalar, vector, and second rank tensor with respect to 
j. 

9
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2T0
0( jj) = −(3)−1/2 ( jx 

2 + jy 
2 + jz ) = −(3)−1/2 j2 

1( jj) = i2−1/2 = −!2−1/2 jT0 ( jx jy − jy jx ) z 

T± 
1
1( jj) = ∓(i / 2){( jy jz − jz jy ) ± i( jz jx − jx jz )} 

! = ∓(i / 2)(i!jx ∓ i!jy ) = ± ( jx ± ijy )2 
2 ( jj) = 6−1/2 2 − j2 − j2T0 {2 jz x y } 

T± 
2
1 ( jj) = ∓ 

1 {( jx jz + jz jx ) ± i( j jz + j jy )}2 y z 

2 1 2T±2 ( jj) = {( jx 
2 + jy ) ± i( jx jy + jy jx )}2 

It is also possible to construct spherical tensor operators out of two vector or tensor operators 

kTq (u,v) 

TQ
K (R k1 ,R k2 ) = ∑ KQ Tk1 (R)Tk2 (R)k1,k2 ,q1,q2 q1 q2 

q1,q2 

3-j, 6-j, and 9-j coefficients 

Our goal is to be able to evaluate the angular factor of matrix elements of operators 
composed of products and sums of angular momentum operators. These operators operate on 
basis states that are simultaneously eigenstates of many angular momenta (j2) and angular 
momentum z-components (jz). The defining angular momentum commutation rule 

⎡⎣ji , j j ⎤⎦ = i!∑ jk 
k 

tells us how to define (or construct) angular momentum operators and a similar commutation 
rule tells us how to define (or construct) spherical tensor operators, T µ 

k (A) , of rank k and 

component µ that act like angular momentum operators.  The Wigner-Eckart Theorem tells 
us how to use angular momentum algebra to couple the bra, ket, and tensor operator to make 
the numerical value of the matrix element, which is a scalar quantity. 

We need to define the weapons of our angular momentum arsenal. 3-j coefficients 
tell us how to relate the coupled |j1,j2,j,mjñ and uncoupled |j,m1,j2,m2ñ basis states so that we 
can evaluate matrix elements for either the coupled or uncoupled representation, whichever 
is more convenient. For example, it is more convenient to deal with the spin-orbit operator, 
A(R)L·S, in the coupled representation, whereas the uncoupled representation is more 
convenient for the Zeeman Hamiltonian 

10
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HZeeman = –gBz(Lz + 2Sz). 
Another property of the 3-j coefficients is that they relate schemes where 

j1 + j2 = j 
j – j1 = j2 

and 
j – j2 = j1. 

This property is explored by permuting two columns of the 3-j coefficient, 
⎛ ⎞j1 j2 j
⎜ ⎟ . 
⎜ m1 m2 −mj ⎟⎝ ⎠ 

We are going to need to deal with more than two angular momenta.  For example, there is the 
nuclear spin I of an atom or the separate nuclear spins of N nuclei in an N-atom molecule.  
There is also the problem of coupling the " i and si of individual electrons into the L and S of 
a many-electron atom or molecule.  3-j coefficients guide the coupling of the magnitude and 
the z-component of three angular momenta.  6-j coefficients, guide the coupling of 3 angular 
momenta j1, j2, and j3 into a total angular momentum, 

j = j1 + j2 + j3. 

There are 3 ways to accomplish this: 

( j1, j2 ) j12 , j3, j 

( j1, j3 ) j13, j2 , j 

.( j2 , j3 ) j23, j1, j 

So we need j12, j23, and j13. There are six angular momenta (d1, d2, d3, j12, j23, j13) to couple to 
form the total angular momentum, j. It is easily proved that the dimension of each of the 
three coupled basis sets is conserved. It is also possible to show that operation by j± on the 
various basis sets does not depend on any of the m quantum numbers. So we have tables of 
6-j coefficients that describe the relationships between the three coupled representations 

= ∑ j1, j2 ( j12 ) j3; j j1, j2 ( j12 ) j3; j j1, j2 , j3 ( j23 ); jj1, j2 , j3 ( j23 ); j 
j12 

where 

11
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⎧ ⎫1/2 ⎪ j1 j2 j12 ⎪j1, j2 ( j12 ) j3; j j1, j2 , j3 ( j23 ); j = (−1) j1+ j2 + j3+ j ⎡⎣(2 j12 +1)(2 j23 +1)⎤⎦ ⎨ ⎬. 
j3 j⎪ j23 ⎪⎩ ⎭ 

The 6-j coefficients are invariant under any interchange of columns and an interchange of 
any 2 numbers in the bottom row with the corresponding 2 numbers in the top row 

⎧⎪
⎨ 
⎪⎩ 

⎫⎪
⎬ = 

⎧⎪
⎨ 

⎫⎪
⎬

j1 j2 j12 j1 j2 j3 

jj3 j23 ℓ1 ℓ2 ℓ3⎪⎩⎪⎭ ⎪⎭ 

where the second 6-j is how the tables of 6-j coefficients are arranged. The values of the 6-j 
coefficients are unchanged by permutations of any two columns 

⎧⎪
⎨ 

⎫⎪
⎬ = 

⎧⎪
⎨ 

⎫⎪
⎬

j1 j2 j3 j2 j1 j3 = etc. 
ℓ1 ℓ2 ℓ3 ℓ2 ℓ1 ℓ3⎪⎩ ⎪⎩⎪⎭ ⎪⎭ 

or interchange of any two upper and lower pairs 

⎧⎪
⎨ 

⎫⎪
⎬ 

ℓ1 ℓ2 j3 = etc.= 
j1 j2 ℓ3⎪⎩ ⎪⎭ 

When there are four angular momenta, the basis set transformations are given by 9-j 
coefficients 

⎧ ⎫j1 j3 j13 

j2 j4 j24 

j12 j34 j 

⎪
⎨

⎪
⎬⎤⎦ 

1/2( ),( j3, j4 ) j34 ( +1)(2 j24 +1)(2 j12 +1)(2 j34 +1)⎤⎦ j = ∑⎡⎣ j1, j2 
⎡⎣j12 2 j13 

⎪ 
⎪⎩ 

⎪ 
⎪⎭ 

j13 , j24 

where the value of the 9-j symbol is multiplied by 

(−1) j1+ j2 + j3+ j4 + j12 + j13+ j24 + j34 + j 

for exchange of any two rows or columns, unchanged for even permutations of rows or 
columns, multiplied by –1 for odd permutations of rows or columns, and unchanged by 
reflection about either diagonal. When one argument of a 9-j symbol is zero, we get 
reduction to a 6-j symbol 

12
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⎧ ⎫j1 j3 j13 

j2 j4 j24 

j12 j34 0 

⎧⎪
⎨

j1 j3 j13 
⎫⎪
⎬. ⎪

⎨
⎪
⎬ ⎡⎣( +1)(2 j12 +1)⎤⎦

−1/2 
(−1) j3+ j13+ j2 + j12= δ j13 , j24 

δ j12 , j34 
2 j13 

⎪ 
⎪⎩ 

⎪ 
⎪⎭ 

⎪⎩ j4 j2 j12 ⎪⎭ 

The 6-j and 9-j symbols are both independent of all m quantum numbers. 

The Wigner-Eckart Theorem 

The Wigner-Eckart Theorem is a powerful tool. It is reductionistic in the sense that it 
reduces an enormous number of angle-dependent matrix elements to a vastly smaller number 
of reduced matrix elements (independent of all projection quantum numbers). The Wigner-
Eckart Theorem often guides further reduction of these reduced matrix elements into a much 
smaller number of structural parameters. It provides a super-highway from description to 
insight. It serves as a roadmap to the assembly of a complete and rigorous description of a 
complex web of interactions between sub-systems: a molecule and an external field, one 
molecule and another molecule, electrons and nuclei, inter-electronic interactions, intra-
electronic interactions (e.g. spin-orbit), inter-nuclear-spin interactions,… The Wigner-Eckart 
Theorem suggests interpretive shortcuts. It legitimizes the “vector model”. Armed with the 
Wigner-Eckhart Theorem, the scientist is able to recognize and exploit “regular” patterns to 
“assign” a spectrum and also to recognize and detect local irregularities in a pattern in order 
to uncover, identify, and quantitate the physical nature of a previously neglected interaction 
mechanism. The Wigner-Eckart Theorem is a subject worthy of a full semester graduate 
course as well as one that invites a lifetime of discovery of new uses for it. 

Matrix Elements of a Vector Operator 
In spherical tensor form a vector operator (a rank-one tensor operator) is expressed as 

V (J) = −2−1/2 (J + iJ ) = −2−1/2 J+1 x y + 

(J) = JV0 z 

(J) = 2−1/2 ) = −2−1/2 J−J − iJV−1 ( x y 

and the scalar product of two vector operators A and B is 
+1 

V(A) ⋅ V(B) = ∑ (−1)qV q (A)Vq (B) = A ⋅ B 
q=−1 

The Wigner-Eckart Theorem for a vector operator, V, that is defined by its commutation 
rules with components of J, as a vector with respect to J, can be reduced to 

ηjm ηjm′ = α(η, j) ηjm ηjm′V± 
J± 

ηjm ηjm′ = α(η, j) ηjm J z ηjm′V0 

or 
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ηjm ±1 V± 
ηjm′ = α(η, j)! ⎡⎣ j( j +1) − m(m ±1)⎤⎦

1/2 

ηjm ηjm′ = α(η, j)!mδ mm′V0 

h symbolizes a collection of other identifiers of the state.  The above equations are the ∆j = 0 
reduced set of matrix elements of V. Non-zero ∆j = ±1 matrix elements are often between 

E j 
(0) (0) − E j±1

basis states for which (e.g. hyperfine components, a single spin-orbit ≫ Vjm, j±1m 

component of an L–S–J state) and the effects of these ∆j ≠ 0 interactions are often small 
enough to be ignored. 

One special value of this reduction to a ∆j = 0 state space is the existence of “operator 
replacements.” For example, for the Zeeman effect 

HZeeman = −µ L ⋅B − µS ⋅B 

µ L = −βL, µS = −2βS 

µ L = −β ℓmℓ = ℓ L ℓmℓ = ℓ = −β"ℓ z 

Similarly for µs (s = 1/2 for an electron) 
µS = –2bS = –b!#(for s = 1/2). 

If the magnetic field is along the laboratory Z direction 

HZeeman = bBZ(LZ + 2SZ). 

Here is where the operator replacement trick comes in 
J = L + S ≡ V 
αjm | V | αjm′ = C αjm | J | αjm′ 

The constant C is evaluated by the following series of tricks 

αjm | V ⋅J | αjm = ∑ αjm | V | αjm′ αjm′ | J | αjm 
m′ 

completeness 

= C∑ αjm | J | αjm′ αjm′ | J | αjm 
m′ 

= C!2 j( j +1) 

C = 
αjm | V ⋅J | αjm 
!2 j( j +1) 

thus 

αjm | V | αjm′ = 
αjm | V ⋅J | αjm 
!2 j( j +1) 

αjm | J | αjm′ 

14
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This formula, called the Landé formula, is a special case of the Wigner-Eckart Theorem.  
Now we use this formula to evaluate matrix elements of HZeeman in the coupled basis 

ℓsjm (L + 2S) i J ℓsjm 
ℓsjm ℓsjm = ℓsjm′ ℓsjm LZ + 2SZ JZ"2 j( j +1) #%%$%%& 

"mδmm ′ 

(L + 2S) · J = (J + S) · J = J2 + S·J 
L = J – S 

L2 = J2 + S2 –2S·J 
S·J=1/2(J2 + S2 – L2) 

(L + 2S) · J = J2 + S·J = 1/2[3J2 + (S2 – L2)] 

and, at last, 

ℓsjm (L + 2S) ⋅J ℓsjm 
ℓsjm L

Z 
+ 2S

S 
ℓsjm = "mδ 

"2 j( j +1) mm′ 

"m ⎡3 1 1 ⎤ 
= ⎢ J(J +1) + S(S +1) − L(L +1)⎥. 
j( j +1) 2 2 2⎣ ⎦ 

This gives the Landé g-factor formula 
HZeeman = BZ !M J gLSJ 

J (J +1) − L(L +1) + S(S +1) = 1+ .gLSJ 2J (J +1) 
Page 1054 of CTDL derives a similar operator replacement formula called the Projection 
Theorem. For any vector quantity, v, in the body-fixed coordinate system, the projection of 
v on j, v|| is conserved 

j⋅ v v = j|| j2 

or, in operator terminology 

ηj J ⋅ V ηjV = J 
!2 j( j +1) 

This is the basis for the vector model, which tells us how body frame quantities, averaged 
over body-rotation, are communicated to the laboratory frame.  The vector model is an 
amazingly insightful interpretive tool! 

15
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The Wigner-Eckart Theorem reduces matrix elements of a commutation-rule-classified 
spherical tensor operator to a reduced matrix element times a 3-j coefficient 

⎛ ⎞j′ k jk = (−1) j ′−m′η′ j′m′ T q (A,B) ηjm α′ j′ Tk (A,B) αj⎜⎜ ⎟⎟⎝ −m′ q m ⎠ 

There are several ways to evaluate the reduced matrix elements. One way, illustrated by the 
treatment of HZeeman, involves tricks with reduced-validity (e.g. ∆j = 0 only) replacement 
operators. Another more general way is to evaluate the matrix element directly for a specific 
choice of m, m¢, and q (usually “stretched state”, m = m¢ = j and q = 0) and then exploit the 
m, m¢, q-independence of the reduced matrix element to obtain its value from the single 
explicitly evaluated m, m¢, q-dependent matrix element. 

kIn order to evaluate one specific matrix element of T (A,B) it is necessary to know how toq 

construct “compound irreducible tensor operators.”  Once this is done, matrix elements of 
k ′ k′′ simpler T (A) and T (B) operators may be evaluated in the most convenient basis sets q′ q′′ 

(obtained using 3-j, 6-j, and 9-j coefficients. 

Compound Irreducible Tensor Operators 

Let F be the total of all angular momenta in a system, for example in an AB diatomic 
molecule 

F = J + Itot = R + L + S + IA + IB 

One very important insight is that, although J, IA, IB, R, L, and S are all classified as vector 
operators (first rank tensor) with respect to F, because each operates on a different set of 
coordinates, R, L, S, IA, IB are all scalar operators with respect to each other.  This means 
that a basis set |R,L,S,IA,IBñ exists which is a simultaneous eigenstate of R2, L2, S2, I2 

A 
, and 

I2 
B 

. There are many choices of intermediate quantum numbers 

Q = S + Itot, F = Q + N, N = R + L 

and we need 6-j coefficients to transform among basis sets based on different sets of 
intermediate quantum numbers. The key point is that we have all of the tools to evaluate 
matrix elements for any chosen set of intermediate quantum numbers. 

16
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If we have products of two commuting angular momenta A and B, how do we 
construct spherical tensor operators of rank k = 2, 1, and 0? Rank k = 0 is special because the 
field-free Hamiltonian is a scalar (k = 0) operator with respect to F. 

Suppose we have two non-communicating state spaces, 1 and 2, such as those 
associated with two commuting angular momenta L«1 and S«2. 

⎛ ⎞j1 j2 j 

m1 m2 m 
j1, j2 , j,m = ∑ (−1) j1− j2 +m 

m1,m2 

j1,m1 j2 ,m2⎜
⎜⎝ 

⎟
⎟⎠ 

We are interested in evaluating matrix elements of a compound spherical tensor operator. 
Suppose that we have a compound spherical tensor operator, Xk , that is composed of a

q 

product of spherical tensor operators that operate on independent sets of variables in spaces 1 
and 2: 

⎛ ⎞k1 k2 k 

q1 q2 −q 
k1 k2( ,U )q2

∑ (−1)k1−k2 +q (2k +1)1/2 Tk1 Uk2 
q1 q2 

kX T ⎜
⎜⎝ 

⎟
⎟⎠ 

= q q1 
q1,q2 

and we want to evaluate the general matrix element 

⎛ ⎞j k j′ 
Xk .Xk η′, j1 ′, j2 ′ , j′,m′ = (−1) j−m η′, j1 ′, j2 ′ , j′η, j1, j2 , j,m η, j1, j2 , jq ⎜⎜ ⎟⎟⎝ −m q m′ ⎠ 

After some algebra we get, for the reduced matrix element: 

⎧ ⎫j1 j1 ′ k1 
1/2 ⎪ ⎪Xk η′, j1 ′, j2 ′, j′ = ⎡⎣(2 j +1)(2 j′ +1)(2k +1)⎤⎦ ⎨ j2 j2 ′ k2 ⎬ 
⎪ ⎪ 

η, j1, j2 , j 

j j′ k⎪ ⎪⎩ ⎭ 

× 
′′η
∑ η, j1 T

k1 η′, ′j1 ′′η , j2 U
k2 η′, ′j2 . 

We have many extremely useful special cases of this general matrix element. Since the 
field–free Hamiltonian is a spherical tensor of rank 0, it is a scalar operator. Massive 
simplifications ensue for the matrix element of X0

0 

X0
0 ≡ [Tk ⊗ Uk ]0

0 
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X0 [Tk ⊗ Uk ]0
0

η′, j1 ′, j2 ′ , j′ = η′, j1 ′, j2 ′ , j′ 

⎧ ⎫ 

η, j1, j2 , j η, j1, j2 , j 

Tk Uk= (−1)k+ j2 + j+ j1 ′ (2k +1)−1/2 (2 j +1)1/2 × 
⎪
⎨ 

j1 j2 j ⎪
⎬∑ η′, j′ 2 .η′′, j1 ′ η′′, j2η, j1 

⎪ j2 ′ j1 ′ k ⎪ η′′ ⎩ ⎭ 

Rather than express X as [Tk ⊗ Uk ]0
0 
, it is more transparent to express it as Tk · Uk 

⎧ ⎫⎪ j1 j2 j ⎪Tk ⋅Uk η′, j1 ′, j2 ′ , j′,m′ = δ j , j ′δ m,m′ (−1) j1 ′+ j2 + j 

⎪
⎨ 

j2 ′ j1 ′ k 
⎬ 
⎪ 

η, j1, j2 , j,m 
⎩ ⎭ 

×∑ Tk Uk η′, j2 ′ .η′′, j1 ′ η′′, j2η, j1 
η′′ 

A major simplification occurs when Xk operates only on the variables in either space 1 orq 

k1 k k1 k2space 2. If X operates only on variables in space 1, X behaves as T , X = T , and U is a 
q1 q q1 q2 

constant with respect to X, thus 

Uk2 = U0
0 

q2 

Tk1 η′, j1 ′, j2 ′ , j′ 

⎧ ⎫ 

η, j1, j2 , j 

1/2 ⎪ j1 j j2 ⎪ Tk1= δ j2 , (−1) j1+ j2 + j ′+k1 ⎡⎣(2 j′ +1)(2 j +1)⎤⎦ ⎨ ⎬ η′, j1 ′ ,η, jj2 ′ ⎪⎩ 
j′ j1 ′ k1 ⎪⎭ 

or, if X operates only on variables in space 2, Xk = Uk2 , then
q q2 

⎧ ⎫
1/2 ⎪ j2 j j1 ⎪j2 ′ + j+kUk2 Uk2η′, j1 ′, j2 ′ , j′ = δ j1, (−1) j1+ ⎡⎣(2 j′ +1)(2 j +1)⎤⎦ ⎨ ⎬ η′, j2 ′ .η, j1, j2 , j η, j2j1 ′ ⎪ j′ j2 ′ k2 ⎪⎩ ⎭ 

An Example: 
Consider an example, the spin-orbit interaction for a two-electron configuration: 

HSO = x(r1)" 1 · s1 + x(r2)" 2 · s2 

Let 

ζ ≡
∞ 

R (r)ξ(r)R (r)r 2dr nℓ;n′ℓ′ nℓ n′ℓ′∫0 

18
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⎪ L S J ⎪HSO 2S ′+12S+1LJ = ζ δ JJ ′δMJ ,
(−1)L′+S+J ⎨

⎧ 
⎬
⎫ 

L L′ S S ′M J ℓ1 s1LJ ′ ′ M J ′ n1ℓ1;n1 ′ℓ′ 1 MJ ′ ⎪ S ′ L′ 1 ⎪⎭⎩ 

⎧ ⎫⎪ L S J ⎪+ζ (−1)L′+S+ J L L′ S S ′ .ℓ2 s2n2ℓ2 ;n2 ′ ℓ′ 2 
δ JJ ′δMJ ,MJ ′ ⎨ ⎬ 

⎪ S ′ L′ 1 ⎪⎩ ⎭ 

Now to evaluate the reduced matrix elements: 

⎧ ⎫
1/2 ⎪ ℓ1 ℓ2 ⎪ℓ1ℓ2 L ℓ′ 1ℓ′ 1L′ = L L′ ≡ δ (−1)ℓ1+ℓ2 +L′+1 ⎡⎣(2L′ +1)(2L +1)⎤⎦ ⎨ 

L 
⎬ ℓ1 ′ℓ1 ℓ1 ℓ1 ℓ1ℓ2 ,ℓ′ 2 L′ ℓ′ 1 1⎪ ⎪⎩ ⎭ 

and similarly for .L L′ℓ2 

⎧ ⎫
1/2 ⎪ s1 δ s2 ⎪ s1s2S s1 ′s2 ′S ′ = S S ′ ≡ δ s2s2 ′ 

(−1)S1+S2 +S ′+1 ⎡⎣(2S ′ +1)(2S +1)⎤⎦ ⎨ ⎬ s′s1 s1 s1 S1s′ 1⎪ s1 ′ ⎪⎩ ⎭ 

and similarly for .S S ′s2 

We know how to evaluate the reduced matrix elements 

L(1) L′ L = ⎡⎣(2L +1)L(L +1)⎤⎦
1/2 
δL′ L 

S (1) S ′ S = ⎡⎣(2S +1)S(S +1)⎤⎦
1/2 
δS ′S 

This enables us to evaluate the HSO matrix element 

HSO 2S ′+12S+1LJ , M J = ζ δ J ,J ′δMJ , 
δ δ (−1)S+S ′+J +ℓ1+ℓ2 +1LJ ′ ′ M J ′ ′ n1,ℓ1,n1 ′ℓ′ 1 MJ ′ ℓ1,ℓ′ 1 ℓ2 ,ℓ′ 2 

× ⎡⎣(2L′ +1)(2L +1)(2S ′ +1)(2S +1)(2ℓ1 +1)ℓ1(ℓ1 +1)(3 / 2)⎤⎦ 
1/2 

⎧ ⎫⎧ ⎫⎧ ⎫ L 1 S 1⎪ L S J ⎪⎪ ℓ1 ℓ2 ⎪⎪ 2 2 ⎪×⎨ ⎬⎨ ⎬⎨ ⎬ 
⎪ S ′ L′ 1 ⎪ L′ ℓ1 1 S ′ 1 1⎩ ⎭⎪⎩ ⎪⎭⎪ 2 ⎪⎭⎩ 

and a similar term for h2" 2s2. 

Many important conclusions may be drawn for HSO expressed in this rigorous and universal 
way: 

1. Selection rules: ∆S = 0, ±1, ∆L = 0, ±1 
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2. Within a 2S+1L multiplet state 
E(2S+1LJ) – E(2S+1LJ–1) = AJ (A is the spin-orbit constant), 

which is the Landé interval rule. 
3. When either L = 0 or S = 0, there is no spin-orbit splitting 
4. Spin-orbit perturbations between two L–S–J states follow a ∆J = 0 selection rule. 
5. A single zn! parameter characterizes all of the spin-orbit splittings and off-diagonal matrix 
elements within a given (n")p configuration. 
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