5.73 Quiz 33

1.

Consider the nd^a electronic configuration. Denote the 10 possible spin-orbitals as 2α , 2β , 1α , 1β , 0α , 0β , -1α , -1β , -2α , -2β , and use the above as the standard order.

A. Fill each of the M_{L} , M_{s} boxes on the diagram below with all of the appropriate nonzero Slater determinants.

M _s	4	3	2	1	0
1					
0					

B. What are all of the L-S terms that belong to nd²?

C. The linear combination of the two Slater determinants in the $|M_L = 3, M_S = 0\rangle$ box that corresponds to the $|{}^1G M_L = 3, M_S = 0\rangle$ many-electron basis state is $2^{-1/2}[||2\alpha 1\beta|| - ||2\beta 1\alpha||]$. Use orthogonality with the $|{}^1G 3 0\rangle$ basis state to derive the linear combination of two Slater determinants that corresponds to $|{}^3F 3 0\rangle$.

D. Calculate
$$\langle {}^{1}G {}^{3} {}^{0} | \mathbf{H}^{SO} | {}^{3}F {}^{3} {}^{0} \rangle = \hbar^{2} \zeta_{nd} [?].$$

You need only consider $\mathbf{H}^{SO} = \sum_{i} \zeta_{nd} \ell_{iz} \mathbf{s}_{iz}.$

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.