Name

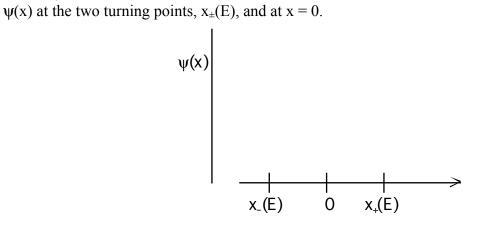
5.73

Quiz 6

Harmonic Oscillator:

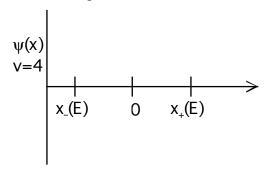
$$V(x)=kx^2/2$$

$$E = T + V$$


$$T = p^2/2m$$

$$p_E(x) = \left[2m(E - V(x))\right]^{1/2}$$
 classical mechanical momentum $x_{\pm}(E) = \pm \left[2E/k\right]^{1/2}$ turning points

$$x_{\pm}(E) = \pm \left[2E/k\right]^{1/2}$$
 turning points


$$\omega = [k/m]^{1/2}$$

Draw a cartoon of the classical mechanical wavefunction, $\psi(x)$, where $P(x) = |\psi(x)|^2$. Recall that the classical probability $P(x) \propto 1/v(x)$. Pay special attention to

(continued other side)

B. Convert your classical mechanical cartoon from part A to a qualitatively correct quantum mechanical cartoon for the v=4 eigenstate. Use deBroglie's equation, $\lambda(x) = h/p(x)$, generalized to allow λ and p to be functions of x. How many nodes? Are the nodes closer together near x=0 or near $x=x_{\pm}(E)$?

C. Make extremely crude approximations to estimate the fraction of time an oscillator at energy $E_n=(n+1/2)\hbar\omega$ can be found between the two center-most nodes. The period of a harmonic oscillator is $\tau=\frac{2\pi}{\omega}$, the node spacing is $\lambda=\frac{h}{p_E}$, and the velocity is $p_E(0)/m$.

MIT OpenCourseWare https://ocw.mit.edu/

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.