Quiz 1 ANSWERS

$$
\begin{array}{ll}
\mathrm{A} \text { is a complex number } & \mathrm{A} \equiv a+\mathrm{i} b(a \text { and } b \text { are real }) \\
\mathrm{A}^{*} \equiv a-\mathrm{i} b & \\
|\mathrm{~A}|^{2}=\mathrm{AA}^{*} &
\end{array}
$$

Re A means real part of A: Re A $=a$
Im A means imaginary part of A: $\operatorname{Im} A=b$
$e^{i x}=\cos x+i \sin x$
A. $\quad \mathrm{A}=4+\mathrm{i} 3$. Evaluate $|\mathrm{A}|^{2}$.

$$
|\mathrm{A}|^{2}=\mathrm{A} * \mathrm{~A}=(4-i 3)(4+i 3)=16+9=25
$$

B. What is $\operatorname{Im}\left[(4+i 3) e^{i 2 x}\right]$?.

$$
\begin{aligned}
& \quad \begin{aligned}
(4+i 3) e^{i 2 x} & =(4+i 3)(\cos 2 x+i \sin 2 x) \\
& =4 \cos 2 x-3 \sin 2 x+i(4 \sin 2 x+3 \cos 2 x) \\
\operatorname{Im}\left[(4+i 3) e^{i 2 x}\right] & =4 \sin 2 x+3 \cos 2 x
\end{aligned} \\
& \text { C. } \quad\left|(4+\mathrm{i} 3) \mathrm{e}^{\mathrm{i} 2 x}\right|^{2} .
\end{aligned}
$$

2.

A. Which eigenstates (even n or odd n) have a node at $x=a / 2$?

The even $n \psi_{n}$ have a node at $x=a / 2$.
The odd $\mathrm{n} \psi_{n}$ have a maximum at $x=a / 2$.
B. There is one internal node in ψ_{2}. How many internal nodes are there in $\psi_{13}(x)$?

There are 13-1 internal nodes in ψ_{13}.
C. Do the eigenfunctions, $\left\{\psi_{\mathrm{n}}\right\}$, change if the potential is shifted up by V_{0} ? Why?

If V_{0} is shifted to higher energy, the boundary conditions do not change. All of the energies shift up by the value of V_{0}. The wavefunctions do not depend on V_{0}.
D. Is there any change in the energy levels, $\left\{\mathrm{E}_{\mathrm{n}}\right\}$, if the potential is shifted to the left by $\mathrm{a} / 2$?

No change.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

