5.73

Quiz 12 ANSWERS

1.

The matrices for \boldsymbol{x} and \boldsymbol{p}, evaluated in the harmonic oscillator eigenbasis, have the general nonzero matrix elements:

$$
\begin{aligned}
\langle n| X|n+1\rangle=x_{n, n+1} & =\left[\frac{\hbar}{2 \omega \mu}\right]^{1 / 2}(n+1)^{1 / 2} \\
& p_{n, n+1}
\end{aligned}=-i\left[\frac{\hbar \omega \mu}{2}\right]^{1 / 2}(n+1)^{1 / 2} .
$$

A. \boldsymbol{x} and \boldsymbol{p} are Hermitian. Write the "other" nonzero matrix element (be careful about $\mathbf{p}!$)
$\boldsymbol{x}_{n+1, n}=\left[\frac{\hbar}{2 \omega \mu}\right]^{1 / 2}(n+1)^{1 / 2}$
$\boldsymbol{p}_{\mathrm{n}+1, \mathrm{n}}=+i\left[\frac{\hbar \omega \mu}{2}\right]^{1 / 2}(n+1)^{1 / 2}$
B. What are the general "selection rules" for nonzero matrix elements of \boldsymbol{x}, \boldsymbol{p}, and \boldsymbol{x}^{2} ?

For $\boldsymbol{x}, \Delta \mathrm{n}= \pm 1$
For $\boldsymbol{p}, \Delta \mathrm{n}= \pm 1$
For $x^{2}, \Delta \mathrm{n}=0$ and ± 2
C. If you multiply \boldsymbol{x} times \boldsymbol{x}, the matrix multiplication cartoon helps:

Based on the cartoon, what is the general selection rule for nonzero matrix elements of $\boldsymbol{x}^{\mathrm{k}}$?

```
\Deltan=\pmk, \pm(k-2),\ldots.\pm1 (if k is odd) or 0 (if k is even)
```

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

