Name

5.73

Quiz 4 ANSWERS

A normalized Gaussian centered at x_0 with variance $(\Delta x)^2$ is described by

$$G(x;x_0,\Delta x) = (2\pi)^{-1/2} (1/\Delta x) e^{-(x-x_0)^2/[2(\Delta x)^2]}$$
.

A. What is the value of the Gaussian function at linecenter, $x = x_0$?

$$G(0;x_0,\Delta x) = (2\pi)^{-1/2} \frac{1}{\Delta x}$$

B. What kind of function is $[G(x;x_0,\Delta x)]^2$?

It is a Gaussian, narrower and taller than $G(x; x_0, \Delta x)$

C. What is the variance of $[G(x;x_0,\Delta x)]^2$?

The variance is $(\Delta x)^2/2$

D. What is the center value of k (i.e., k_0) and the variance of k for

$$\Psi(x,0) = (31)^{-3/4} \int_{-\infty}^{\infty} e^{-(49/9)(k-5)^2} e^{ik(x-2)} e^{i5} dk ?$$

$$k_0 = 3$$

$$2(\Delta k)^2 = \frac{9}{49}, \ (\Delta k)^2 = \frac{9}{98}$$

E. What is the center value of x (i.e., x_0)?

$$x_0 = 2$$

MIT OpenCourseWare https://ocw.mit.edu/

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.