5.73

Quiz 34 ANSWERS

- 1. * Use the standard order for np spin-orbitals on Page 30-4: 1α , 1β , 0α , 0β , -1α , -1β

$$\langle ||a_1b|||F(i)|||a_1a_2|| \rangle = \langle b|f|a_2 \rangle$$

- * Recall that $\langle ||a_1a_2|||F(i)|||a_1a_2||\rangle = \sum_i \langle a_i|f|a_i\rangle$ $\langle ||a_1b|||F(i)|||a_1a_2||\rangle = \langle b|f|a_2\rangle$ * The electronic states that arise from the p² electronic configuration are ¹D, ³P,
- A. Construct the two Slater determinantal wavefunctions that correspond to $M_{J} = M_{L} + M_{S} = +2.$

[HINT: both $|LSJM_J = 2\rangle$ coupled states are single Slater determinants.]

$$\left| {}^{1}\mathrm{D}_{2} M_{J} = 2 \right\rangle = \left\| \left\| 1\alpha 1\beta \right\| \right\|$$

$$\begin{vmatrix} {}^{1}D_{2} M_{J} = 2 \rangle = \boxed{\|1\alpha 1\beta\|}$$
$$\begin{vmatrix} {}^{3}P_{2} M_{J} = 2 \rangle = \boxed{\|1\alpha 0\alpha\|}$$

Calculate the two diagonal and one off-diagonal matrix elements of В. $\mathbf{H}^{\text{SO}} = \sum_{i} a(r_i) \ell_i \cdot s_i :$

(i)
$$\left\langle {}^{1}\mathbf{D}_{2} M_{J} = 2 \left| \zeta_{p} \left(\ell_{1z} \mathbf{s}_{1z} + \ell_{2z} \mathbf{s}_{2z} \right) \right| {}^{1}\mathbf{D}_{2} M_{J} = 2 \right\rangle =$$

$$\left[\hbar^{2} \zeta_{p} \left[1 \cdot \frac{1}{2} + 1 \cdot \left(-\frac{1}{2} \right) \right] = 0 \right]$$

(ii)
$$\left\langle {}^{3}P_{2} M_{J} = 2 \left| \zeta_{p} \left(\ell_{1z} \mathbf{s}_{1z} + \ell_{2z} \mathbf{s}_{2z} \right) \right| {}^{3}P_{2} M_{J} = 2 \right\rangle =$$

$$\left[\hbar^{2} \zeta_{p} \left[1 \cdot \frac{1}{2} + 0 \cdot \frac{1}{2} \right] = \hbar^{2} \zeta_{p} \frac{1}{2} \right]$$

(iii)
$$\left\langle {}^{3}P_{2} M_{J} = 2 \left| \frac{1}{2} \zeta_{p} \left(\ell_{1-} \mathbf{s}_{1+} + \ell_{2-} \mathbf{s}_{2+} \right) \right| {}^{1}D_{2} M_{J} = 2 \right\rangle =$$

$$\left[\frac{1}{2} \hbar^{2} \zeta_{p} \left[\left\langle 1\beta \left| \ell_{+} \mathbf{s}_{-} \right| 0\alpha \right\rangle \right] = \frac{1}{2} \hbar^{2} \zeta_{p} [1 \cdot 2 - 1 \cdot 0]^{1/2} = 2^{-1/2} \hbar^{2} \zeta_{p} \right]$$

1

MIT OpenCourseWare https://ocw.mit.edu/

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.