Numerov-Cooley Method : 1-D Schr. Eq.

Last time: Rydberg, Klein, Rees Method and Long-Range Model

$$
\begin{aligned}
& \mathrm{G}(\mathrm{v}), \mathrm{B}(\mathrm{v}) \text { rotation-vibration constants } \\
& \quad \downarrow \\
& \mathrm{V}_{\mathrm{J}}(\mathrm{x}) \text { potential energy curve } \\
& \quad \downarrow \mathrm{x}=\mathrm{R}-\mathrm{R}_{\mathrm{e}} \\
& \quad E_{v, J}, \Psi_{v, J}, \text { all conceivable experiments including wavepackets, wp }(x, t)
\end{aligned}
$$

Initial preparation of wp: $a_{i}=\int \Psi_{i}^{*}[w p(x, 0)] d x$
Completeness: Any arbitrary wavefunction may be expanded as a linear combination of eigenstates of \mathbf{H}.

Method for RKR derivation: $\mathrm{A}(\mathrm{E}, \mathrm{J})=$ area of $\mathrm{V}(\mathrm{x})$ below E : used WKB Quantization Condition

obtained $\mathrm{x}_{ \pm}(\mathrm{E}, \mathrm{J})$ - a series of pairs of turning points on a grid of E .

Today: What do we do when we have a potential energy curve, $\mathrm{V}_{\mathrm{J}}(\mathrm{x})$, (especially when $\mathrm{V}(\mathrm{x})$ is not suited for WKB)?
Solve Schr. Eq. numerically!

No models
$\{15$ digit reproducibility cheap

This is the final tool we will develop for use in the Schrödinger representation. To summarize the classes of 1-D problem we are able to solve:

* piecewise constant potentials (matrix approach for joining at $\Psi(x)$ boundaries)
* Airy functions (linear potential and joining JWKB across turning point)
[Not done in 2018]
* JWKB (quantization condition and semi-classical wavefunctions)
* numerical integration (today)

Numerical Integration of the 1-D Schrödinger Equation

widely used incredibly accurate

no restrictions on $\mathrm{V}(\mathrm{x})$ or on $\mathrm{E}-\mathrm{V}(\mathrm{x})$ [e.g. nonclassical region, near turning points, double minimum potential, kinks in $\mathrm{V}(\mathrm{x})$.]
For most 1-D problems, where all one cares about is a set of $\left\{\mathrm{E}_{\mathrm{i}}, \psi_{\mathrm{i}}\right\}$, where ψ_{i} is defined on a grid of points x_{i}, one uses Numerov-Cooley
leroy.uwaterloo.ca/programs.html
LEVEL: A computer program for solving the radial Schrödinger equation for bound and quasibound levels
R.J. Le Roy, Journal of Quantitative Spectroscopy and Radiative Transfer 186, 167-178 (2016).

RKR1 - A Computer Program implementing the first-order RKR method for determining diatomic molecule potential energy functions
R.J. Le Roy, Journal of Quantitative Spectroscopy and Radiative Transfer 186, 158-166 (2016).
J. A.Tellinghuisen, "Potential Fitting RKR Method: Semiclassical vs. Quantal Comparisons". Journal of Molecular Spectroscopy. 330, 20-27 (2016).

Supplements for Lecture \#9:

1. Cooley, Math. Comput. 15, 363 (1961).
2. Press et. al., Numerical Recipes, Chapters 16 and 17
3. Classic unpublished paper by Zare and Cashion with listing of Fortran program [now better to see LeRoy web site]
4. Tests of Numerov-Cooley vs. other methods by Tellinghuisen
5. LeRoy JQSRT paper

Basic Idea: grid method

* solve differential equation by starting at some x_{i} and propagating trial solution from one grid point to the next
* apply $\psi(\mathrm{x})=0$ boundary conditions at $\mathrm{x}=0$ and ∞ by two different tricks and then force agreement between $\psi_{\text {left }}(\mathrm{x})$ and $\psi_{\text {right }}(\mathrm{x})$ at some intermediate point by adjusting E.

Euler's Method

Need a "generating function," $\mathrm{f}\left(x_{\mathrm{n}}, \psi_{\mathrm{n}}\right)$

$$
\begin{aligned}
& \text { prescription for going } n \rightarrow n+1 \text { must } \\
& \psi_{n+1}=\psi_{n}+\operatorname{hf}\left(X_{n}, \psi_{n}\right) \quad \begin{array}{l}
\text { and } \psi_{n} \cdot x_{n} \text { samples } \\
\text { potential, } \psi_{n} \text { sample }
\end{array} \\
& \uparrow \\
& \text { increment } \\
& \text { in } \mathrm{x} \\
& \mathrm{x}_{\mathrm{n}+1}-\mathrm{x}_{\mathrm{n}}=\mathrm{h} \text { [NOT Planck' } \mathrm{s} \text { constant] }
\end{aligned}
$$

(Ψ_{n} is a number, not the entire wavefunction.)
For the Euler method, the generating function is simply:

$$
\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}, \psi_{\mathrm{n}}\right)=\left.\frac{\mathrm{d} \psi}{\mathrm{dx}}\right|_{\mathrm{x}_{\mathrm{n}}} \approx \frac{\psi_{\mathrm{n}+1}-\psi_{\mathrm{n}}}{\mathrm{x}_{\mathrm{n}+1}-\mathrm{x}_{\mathrm{n}}}=\frac{\psi_{\mathrm{n}+1}-\psi_{\mathrm{n}}}{\mathrm{~h}}
$$

The value of this derivative actually comes from the differential equation that ψ must satisfy, not from prior knowledge of $\psi(\mathrm{x})$ (which we do not yet have!)

For the Schrödinger Eqn. $\frac{d^{2} \psi}{d x^{2}}=-\frac{2 \mu}{\hbar^{2}}(E-U(x)) \psi$

$$
\begin{aligned}
& \begin{array}{l}
\text { All constants absorbed in } \mathrm{V}(x) \text {. } \mathrm{V}(x) \text { must be in units of } \AA^{-2} \text {. } \\
\text { note that } V(x)=-k(x)^{2}=\frac{-p(x)^{2}}{\hbar^{2}}
\end{array} \\
& \frac{d^{2} \psi}{d x^{2}}=V(x) \psi(x) \quad C=10^{-16}\left(8 \pi^{2} c \mu / h\right) \quad \begin{array}{l}
h \text { here is not increment of distance, } \\
\text { LPlanck }
\end{array} \\
& d \psi \quad \psi^{-} \quad=0.0593203146 \mu_{A} \quad h \text { and } x \text { are in } \AA . E \text { and } U(x) \text { are in } \\
& \left.\frac{d \psi}{d X}\right|_{x_{i}} \equiv \frac{\psi_{i+1}-\psi_{i}}{\mathrm{~h}-\text { not Planck }}\left(\mu_{A} \text { in amu }=\frac{\text { gram }}{\text { mole }},{ }^{12} C\right) \mathrm{cm}^{-1} \text { units }(E / h c) \\
& \frac{d^{2} \psi}{d x^{2}} \left\lvert\,=\left\{\left[\frac{\psi_{i+1}-\psi_{i}}{h}\right]-\left[\frac{\psi_{i}-\psi_{i-1}}{h}\right]\right\} / \mathrm{h} \quad \mu_{\mathrm{A}}=\frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right.
\end{aligned}
$$

(Planck's constant h is in italics, grid spacing h is not italic.)

Schr. Eq. tells us the rule for propagating ψ. Employing Euler's method (h is not Planck's constant):

$$
\begin{array}{ll}
\mathrm{h}^{-2}\left[\psi_{\mathrm{i}+1}-2 \psi_{\mathrm{i}}+\psi_{\mathrm{i}-1}\right]=\mathrm{V}_{\mathrm{i}} \psi_{\mathrm{i}} & \text { rearrange to solve for } \psi_{i+1} \\
\psi_{\mathrm{i}+1}-2 \psi_{\mathrm{i}}+\psi_{\mathrm{i}-1}=\mathrm{h}^{2} \mathrm{~V}_{\mathrm{i}} \psi_{\mathrm{i}} & \\
\psi_{\mathrm{i}+1}=2 \psi_{\mathrm{i}}-\psi_{\mathrm{i}-1}+\mathrm{h}^{2} \mathrm{~V}_{\mathrm{i}} \psi_{\mathrm{i}} & \begin{array}{l}
\text { a recursion relationship. Need both } \psi_{i} \text { and } \\
\psi_{i-1} \text { to get } \psi_{i+1} .
\end{array}
\end{array}
$$

In order to get things started we need two values of ψ starting at either edge of the region where ψ is defined and ψ starts out very small.
[See Press et. al. handout (Numerical Recipes, Chapters 16 and 17) for discussion of nth-order Runge-Kutta method. The generator is chosen more cleverly than in the Euler method so that stepping errors are minimized by taking more derivatives at intermediate points in the $\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}$ interval.]
Cooley specifies

$$
\begin{aligned}
y_{i+1}= & 2 y_{i}-y_{i-1}+\mathrm{h}^{2} V_{i} \psi_{i} \\
y_{i}=[& \left.1-\left(\mathrm{h}^{2} / 12\right) V_{i}\right] \psi_{i}(\text { and vice versa }) \\
& \text { * use } \psi_{i} \text { to get } y_{i} \\
& \text { *use } \psi_{i} \text { and } y_{\mathrm{i}}\left(\text { and } y_{i-1}\right) \text { to get } y_{i+1} \\
& \text { * use } y_{i+1} \text { to get } \psi_{i+1}
\end{aligned}
$$

The result is that the error in ψ_{i+1} is on the order of $\frac{\mathrm{h}^{6}}{240} \psi_{i} V_{i}$ - smaller error if h is smaller
(Cooley's method is much better than Euler's, which converges as a smaller power of h)

So what do we do?

$$
\begin{aligned}
& \text { e.g., } V_{\text {MORSE }}(R)=D_{e}\left[1-e^{-\beta\left(R-R_{e}\right)}\right]^{2}-D_{e} \quad \text { [zero of } \mathrm{V} \text { at dissociation] } \\
& V(\infty)=0, V\left(R_{e}\right)=-D_{e}
\end{aligned}
$$

or, more generally than Morse, use $\mathrm{V}_{\mathrm{J}, \mathrm{RKR}}$.
$\mathrm{x}=\mathrm{R}-\mathrm{R}_{\mathrm{e}}$ (displacement from equilibrium)

$$
\left.\begin{array}{rll}
\text { at } R & =0 & x=-R_{e} \\
R & =\infty & \\
& \psi\left(-R_{e}\right)=0 \\
\psi(\infty)=0
\end{array}\right\} \text { boundary conditions }
$$

The two boundary conditions are handled differently, because we want to define a finite \# of equally spaced grid points (not actually necessary - see Press: he uses a variable grid spacing, which is needed to sample an infinite range of x with a finite number of grid points)

\[

\]

Use this to start the integration outward. When we discover later that we made a wrong choice for ψ_{1}, this is corrected merely by dividing all $\psi_{\mathrm{i}} \mathrm{i} \geq 1$ by an i-independent correction factor.

At large R (in the classically forbidden region), choose ψ_{n} at the last grid point, x_{n}, to be small and use WKB only once to compute the next to last grid point. We do this because we have no reason to extend the calculation to $\mathrm{x} \rightarrow \infty$.
$\psi_{\mathrm{n}}=10^{-30} \quad$ (the final grid point) (based on experience)

$$
\psi_{\mathrm{WKB}}=|p|^{-1 / 2} \exp \left[-\frac{1}{\hbar} \int_{R_{+}(E)}^{x}|p| d x\right]
$$

integrating inward from outer turning point.

$$
\begin{aligned}
& V(x) \equiv-\frac{2 m}{\hbar^{2}}(E-U(x))=\frac{p^{2}}{\hbar^{2}} \\
& \left|p_{n}\right|=\left[2 m\left(E-U_{n}\right)\right]^{1 / 2} \equiv \hbar V_{n}^{1 / 2} \\
& U_{n}=U\left(x_{n}\right)
\end{aligned}
$$

WKB gives us the ratio

$$
\frac{\psi_{n-1}}{\psi_{n}}=\frac{\left|p_{n-1}\right|^{-1 / 2} \exp \left[-\frac{1}{\hbar} \int_{R_{+}(E)}^{x_{n-1}} p_{n-1} d x\right]}{\left|p_{n}\right|^{-1 / 2} \exp \left[-\frac{1}{\hbar} \int_{R_{+}(E)}^{x_{n}} p_{n} d x\right]}
$$

$p_{n-1} \approx p_{n}$ so pre-exponential terms cancel. Evaluate integral in exp as a sum.

$$
\int_{x_{-}}^{x_{+}} f(x) d x=\sum_{i\left(x_{-}\right)}^{i\left(x_{+}\right)} h f\left(x_{i}\right)
$$

and $\quad e^{a+b+c}=e^{a} e^{b} e^{c}$, and $\frac{e^{a+b+c}}{e^{a+b+c+d}}=\frac{1}{e^{d}}$.
Thus, for $\frac{\psi_{n-1}}{\psi_{n}}=\frac{1}{\exp \left[-\frac{1}{\hbar}\left|p_{n}\right| \hbar\right]}=\exp \left[V_{n}^{1 / 2} \hbar\right]$ all of the corresponding terms in the sum cancel, leaving only the p_{n} term.

But we chose $\psi_{n}=10^{-30}$

$$
\text { thus } \psi_{n-1}=10^{-30} \exp \left[V_{n}^{1 / 2} \mathrm{~h}\right]
$$

So we have ψ_{n} and ψ_{n-1} and we are off to the races.

meet in the middle at ψ_{m}.

Stop the inward propagation of ψ when a point is reached where, for the first time, $\left|\psi_{m}\right|>\left|\psi_{m+1}\right|$. This locates the first maximum of ψ inside the outer turning point.

Since $\left|\psi_{i}\right|$ is exponentially increasing from 10^{-30} at $i=\mathrm{n}$ until it reaches its first maximum inside the classically allowed region, this outer lobe of ψ is also the most important feature of ψ (because most of the probability resides in it).

Use the outermost lobe because this is the global maximum of $\psi(x)$. This choice minimizes the problem of precision being limited by the finite number of significant figures in the computer.

Set value of $\psi_{\mathrm{m}}=1.0$ by renormalizing both functions

$$
\begin{array}{ll}
* & \psi \text { from } \mathrm{n}, \mathrm{n}-1, \ldots \mathrm{~m} \\
\text { (from the right) } & \vdots \\
\text { (for all } \mathrm{i} \text { down to } \mathrm{m} . \\
\psi \text { from } \mathrm{i}=0,1, \ldots \mathrm{~m} & \vdots \\
\text { (from the left) } & \text { fre all } \mathrm{i} \text { up to } \mathrm{m} .
\end{array}
$$

The renormalized ψ^{\prime} s are denoted by ψ^{\prime}.

ψ^{\prime} must be continuous, especially at the joining grid point, m .

This ensures that $\psi(\mathrm{x})$ is continuous everywhere and that it satisfies grid form of Schr. Eq. everywhere except at $i=m$.

$$
0=\left(-\psi_{i+1}+2 \psi_{i}-\psi_{i-1}\right)+\mathrm{h}^{2} V_{i} \psi_{i}
$$

In order to satisfy Schr. Eq. for $i=m$, it is necessary to adjust E. The above equation can be viewed as a nonlinear requirement on E . At the crucial grid point $i=m$, define an error function, $\mathrm{F}(\mathrm{E})$.

$$
F(E)=\left(-\psi_{m+1}^{E}+2 \psi_{m}^{E}-\psi_{m-1}^{E}\right)+\mathrm{h}^{2} V_{m}^{E} \psi_{m}^{E}
$$

where, by varying E, we want to search for the zeroes of $F(E)$.

Assume that $\mathrm{F}(\mathrm{E})$ can be expanded about $\mathrm{E}_{1}\left(\mathrm{E}_{1}\right.$ is the initial, randomly chosen value of E.)

$$
F(E)=F\left(E_{1}\right)+\left.\frac{d F}{d E}\right|_{E_{1}}\left(E-E_{1}\right)+\begin{gathered}
\text { discard higher terms } \\
\text { (linearization approximation): Newton-Raphson }
\end{gathered}
$$

and solve for the value of E where $\mathrm{F}(\mathrm{E})=0$.
Call this E_{2}

$$
\begin{gathered}
0=F\left(E_{1}\right)+\left.\frac{d F}{d E}\right|_{E_{1}}\left(E_{2}-E_{1}\right) \\
E_{2}=-\frac{F\left(E_{1}\right)}{(d F / d E) E_{1}}+E_{1} \begin{array}{l}
\text { This gives an } \\
\text { estimate of where } \\
\text { the zero of } F(E) \\
\text { nearest } E_{1} \text { is } \\
\text { located. }
\end{array}
\end{gathered}
$$

Usual approach: compute $\left.\frac{d F}{d E}\right|_{E_{1}}=\frac{F\left(E_{1}+\delta\right)-F\left(E_{1}\right)}{\delta}$
Once the derivative is known, use it to compute the trial correction to E_{1} (assuming linearity).
$\begin{aligned} & \begin{array}{l}\text { Newton-Raphson } \\ \text { method for solving } \\ \text { nonlinear equation }\end{array}\end{aligned} E_{2}=E_{1}+\Delta \quad \Delta \equiv-\frac{F\left(E_{1}\right)}{(d F / d E)_{E_{1}}} \quad \begin{aligned} & \text { Are we done? Not quite done if } \\ & F(E) \text { is not sufficiently linear } \\ & \text { near } E_{i} . \text { Keep iterating! }\end{aligned}$

Iterate until the correction, Δ, to E is smaller than a pre-set convergence criterion, ε. This seems like a lot of work, but the computer does not complain.

Now we have one not-yet-normalized eigenfunction of \mathbf{H} and the corresponding eigenvalue, E .
Normalize ψ_{E} by dividing by $\left|\int \psi^{*} \psi d x\right|^{1 / 2}=N_{E}$
box normalized: $\left.\quad \psi_{E}\left(x_{i}\right)=\frac{\psi_{i}}{[} \quad\right]^{1 / 2} \quad \begin{aligned} & \psi \text { real for bound 1-D } \\ & \text { function }\end{aligned}$

$$
\int \psi^{*} \psi d x=\sum_{i=0}^{n}\left|\psi_{i}\right|^{2} \mathrm{~h} \quad \begin{aligned}
& \text { Recall that normalization } \\
& \text { integral is evaluated by } \\
& \text { summation over grid points }
\end{aligned}
$$

This procedure has been used and tested by many workers. The latest and extensively documented version, "Level 16" is obtainable at Robert LeRoy's web site:
http://dx.doi.org/10.1016/j.jqsrt.2016.05.028
LEVEL: A computer program for solving the radial Schrödinger equation for bound and quasi-bound levels, Robert J. LeRoy.
I will assign some problems based on Numerov-Cooley method for integrating the 1-D Schr. Eq.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

