
 
 

 
  
 

 
 
 

 
 
 

    
 

        
 
 

 
 

  
 

    

 

 
 

 

 
   

 

 
 

 

 
 

 
 

 
            

   
 

  
 

    
 

 		 		  		 		      
 

 
 

 

 
		

 

 
 

 
   

 
   

 
     

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

5.73 Quantum Mechanics I 
Fall, 2018 

Professor Robert W. Field 

Problem Set #7 

Reading:  CTDL, Pages 290 - 307, 643 - 662, 712 - 741 

Problems: 

1. Consider the two-level problem

⎛ ( )0 V ⎞ ⎛ Δ V ⎞EB E (0) H = ⎜ ⎟ = + ( )0 ⎜ ⎟ 
V ⎝V −Δ⎠⎝ ED ⎠

(0) (0) (0) − E(0)
D E (0) ≡ 

EB + ED EB , Δ ≡ 
2 2 

(0 ) and ED where EB 
(0 ) are respectively the zero-order energies of a “bright” and a “dark” state.  The 

names bright and dark refer to the ability to absorb and emit a detectable photon. 

A. Solve for the eigenstates

E+, ψ+, and E–, ψ–

(0) (0) (0) in terms of E , ψ(0) , and E , ψ , where, by definition E+ > E– and let V be real andB B D D 

V > 0.

Use the standard notation for the two level problem

(0) (0) = cos(θ /2) ψB 
+ sin(θ /2) ψD 

ψ+ 

= −sin(θ /2) ψ(0) + cos(θ /2) ψ(0) ψ− B D 

where 

tanθ = V/∆. 

B. By definition, at the instant of pulsed-excitation by a photon pulse,

(0 ) (x).Ψ(x, t=0) = ψB
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Solve for Ψ(x,t) = a+(t)ψ+(x) + a–(t)ψ–(x). 

C. Construct the 2 × 2 density matrix, ρ(t), that corresponds to Ψ(x,t) in the ψ(0) , ψ(0) basis B D 

set. 

(0) (0) D. The detection operator, D! = , is a projection operator, which projects out the ΨB 
ΨB 

ˆ bright state character.  Write the matrix representation of D , D, in the ψ(0) , ψ(0) basis set. B D 

E. Calculate the expectation value of D for the Ψ(x,t) state represented by the ρ(t) from part 
C, as

〈 D〉 = Trace(ρD). 

You have just re-discovered “Quantum Beats”! 

D D MAX − MIN V F. Plot the (time-independent) fractional modulation, , vs. (0) . (0) − E D D MAX EB 

It is common to talk about the time evolution as if the system is “moving” in state space 
(as opposed to coordinate space) back and forth between the Bright and Dark states. 

G. Suppose you could make some sort of magical change in the experimental apparatus so 
that the original Bright state is still excited at t = 0 but that the detector operator now 
exclusively “sees” the original dark state.  How does this alter the form of D and 〈 D〉 and 
the amplitude and phase of the quantum beats? 

2. Consider a molecule with two identical anharmonic local R-H stretch oscillators.  The two local 
oscillators are anharmonically coupled by the simplest possible coupling term: 

H = HL + HR + !kLRqLqR 

1 † 1 † 2 
HL = 

2 
!ω ⎡⎣aL a

†
L + aL aL ⎤⎦ + 

4 
!x ⎡⎣aL a

†
L + aL aL ⎤⎦ 

2 
HR = 

2
1 
!ω ⎡⎣aR a

†
R + a†

R aR ⎤⎦ + 
4
1 
!x ⎡⎣aRa

†
R + a†

R aR ⎤⎦ 

(L=Left, R=Right) 
H(0) = HL + HR 

H(1) = 
1
2 
!kLR (aL + a†

L )(aR + a†
R ) 

Note that ⎡⎣aL ,a†
L ⎤⎦ = ⎡⎣aR ,a†

R ⎤⎦ = 1 

0 = ⎡⎣aL ,aR ⎤⎦ = ⎡⎣aL ,a†
R ⎤⎦ = etc. 
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All basis states may be derived from 

]−1/2 = ( † )nL ( † )nR 00 [nL !nR ! . nLnR aL aR 

Since ωL = ωR = ω and xLL = xRR = x and xLR = 0, the two local oscillators are identical.  Thus 
the energy levels (and basis sets) are arranged in polyads where the polyad quantum number, P, 
is 

P=a†L aL +a
†
R aR . 

The selection rule for H(1) is ∆nL = ±1, ∆nR = ±1, and the intrapolyad selection rule is ∆nL = –∆nR 
= ±1.  

If we treat qL and qR as dimensionless, then ω, x, and kLR all have the same units.  All parts of 
the following problem are to be based on [ω = 1000, m = 1, x = 10, and kLR = 1] or [ω = 1000, m 
= 1, x = 1, kLR = 10].  The first set of parameters is close to the normal mode limit and the second 
set of parameters is close to the local mode limit. 

A. Set up the 11 × 11 P = 10 polyad.  Solve for the energy eigenvalues and eigenvectors.  Do 
this twice, once for each of the two parameter sets, above.  Give an energy level diagram 
where all 11 energy states are shown on the same diagram.  Specify the basis state (and 
its fractional character) that has the largest fractional character in each eigenstate.  Are 
there any surprising features? 

B. The normal mode creation and annihilation operators are 

= 2−1/2 † = 2−1/2 † as (aL + aR ), as (a†L + aR ) 
= 2−1/2 † = 2−1/2 † aa (aL − aR ), aa (a†L − aR ) 

and the normal mode basis states are 

]−1/2 ( )ns ( )na = as
† aa

† 00 [ns !na ! . nsna 

The subscripts s and a stand for symmetric and antisymmetric.  Calculate the expectation 
values of as

†as and a†L aL for the highest and lowest energy eigenstates in the P = 10 
polyad for both sets of parameters. 

What does this tell you about the transition from the local mode limiting case to the 
normal mode limiting case?  In particular, does x << kLR favor the normal mode or local 
mode limit?  Why? 

C. Evaluate ⎡⎣H,a
†
L aL ⎤⎦ and ⎡⎣H,a

†
s as ⎤⎦ .  These quantities are important in the Heisenberg 

equation of motion.  They will reveal the terms in H that cause the local mode and 
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normal mode quantum numbers not to be conserved.  This is a problem in operator 
algebra and does not depend on which of the two sets of parameters is used to specify H. 

D. To (eventually) examine t and you will need to evaluate the commutators qL qS t 

H,2−1/2 † H,2−1/2 † ⎡⎣ (aL + aL )⎤⎦ and ⎡⎣ (as + as )⎤⎦ . 

These commutators will identify the terms in H that cause t and to move.  qL qS t 

According to Newton, 
F = ma 

1 dp d 2q 1 dV (q) = = − 
m dt dt 2 m dq 

1 1 ∂V If V (q) = kq2 , = k. 
2 q dq 

You should find that the “effective force constant” for the qL oscillator is different from 
that for the qs oscillator.  The effective force constant may be defined as 

1 ∂H keff = . 
q ∂q 

[HINT: ωs = ω + λ and ωa = ω – λ, where λ is intimately related to kLR.] 

This problem involves a lot of operator algebra. 

E. Let Ψ(0) = ns = 10,na = 0 . 

Construct |Ψ(t)〉 and, from ρ(t) = |Ψ(t) 〉〈Ψ (t)|, construct ρ(t). 

Do this considering only the energy eigenvalues and eigenvectors of the P = 10 polyad.  
Do this twice, once for each of the two sets of parameters. 

(i) Use |Ψ(t)〉 to compute the survival probability 

2 ℘(t ) = Ψ(q,t ) Ψ(q,0) . 

(ii) Use ρ(t) to compute 

qL t 

qs t 
† as as t 
† aL aL t 
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Do you notice anything remarkable? 

(iii) Compute the Fourier transform of t and t and discuss the result in terms 
of your answer to part D. 

qL qS 

F. Now we shall use the results of part C.  For a time-independent operator A ˆ , a basic 
quantum mechanical relation is 

i! d Â 
= [Â,Ĥ ] , 

dt 

whence we get 

† d aL aL ⎡⎣H,a
†
L aL ⎤⎦ i! = 

dt 

and 

† d as as ⎡⎣H,as
†as ⎤⎦ i! = . 

dt 

These are expressions for the rate of change of nL and ns, or the energy flow in or out of 
mode L or s, respectively. 

† † Using the same state Ψ(t) as in part D, plot d dt and d dt as a function 
of time for one or both sets of parameters. Is the relationship between these plots and 

aL aL as as 

† † those of t and consistent with your intuition? aL aL as as t 
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