Last time: WKB quantization condition for bound eigenstates of almost general $\mathrm{V}(\mathrm{x})$ - Connections into bound region from left and right

WKB Quantization Condition
$\int_{X_{-}(E)}^{X_{+}(E)}$
$p_{E}\left(x^{\prime}\right) d x^{\prime}=\frac{\mathrm{h}}{2}(n+1 / 2)$
$p_{E}(x)=[2 m(E-V(x))]^{1 / 2}$

Error: no more than one extra level, raise $\mathrm{E}, \mathrm{p} \uparrow$, nodes get closer together
E_{n} without ψ_{n} !

But where do we get $V(x)$?

\rightarrow| timing of w.p. as it |
| :--- |
| moves on V(x)? |\quad other stuff too Certainly not from femtochemistry! From FREQUENCY DOMAIN SPECTROSCOPY

$\mathrm{E}_{v, J} \rightarrow V(x)$? Energy levels as function of quantum numbers \rightarrow potential energy as function of coordinate, $V(x)$.

RKR method

Next time: Numerical Integration of 1-D Schr. Eq. - See handouts.
Then we will begin working toward matrix picture
We will need background in Chapter 2 of CTDL, pages 94-121 soon, apges 121-144 by next week
Postulates and Theorems will not be covered except as needed for solving problems

Today:	$\mathrm{E}_{\mathrm{V}, \mathrm{J}} \rightarrow$ spectroscopic notation $: \mathrm{cm}^{-1}$ units,	T electronic
Area:	$\mathrm{A}(\mathrm{E}, \mathrm{J})=$	
G vibrational		

$\frac{\partial A}{\partial E}, \frac{\partial A}{\partial J}$ respectively determine $x_{+}(E)-x_{-}(E)$ and $\frac{1}{x_{+}(E)}-\frac{1}{x_{-}(E)}$

> vibrational constants

Long Range Theory: Ultra Cold Collisions: Atom in Molecule

Someday you will discover that the energy levels of a diatomic molecule are given by

$$
\begin{aligned}
& E_{\text {evJ }} / h c=T_{e}+G(v)+F_{v}(J) \quad \mathrm{cm}^{-1} \\
& \stackrel{\text { electronic }}{=} \nu_{e}+\left[Y_{00}^{\text {vibration }}+\omega_{e}(V+1 / 2)-\omega_{e} X_{e}(V+1 / 2)^{2}+\ldots\right] \\
& +\underbrace{\left[B_{e}-\alpha_{e}(v+1 / 2)+\ldots\right]}_{\mathrm{B}(\mathrm{v})} J(J+1)-D J^{2}(J+1)^{2}
\end{aligned}
$$

RKR requires only $\underline{G(v)}$ and $\underline{B(v)}$ spectroscopic data to get $\underline{V_{J}}(x)$

$$
\begin{gathered}
\underset{\substack{\mathrm{J} \text {-dependent } \\
\text { effective } \\
\text { potential }}}{\text { where } \mathrm{V}_{\mathbf{J}}(\mathrm{X})}=\underset{\begin{array}{c}
\text { bare } \\
\text { potential }
\end{array}}{\mathrm{U}(\mathrm{x})}+\frac{\hbar^{2} \mathrm{~J}(\mathrm{~J}+1)}{2 \operatorname{cic}^{2}} \quad \mathrm{x} \equiv \mathrm{R}-\mathrm{R}_{\mathrm{e}} \\
\begin{array}{c}
\text { centrifugal barrier } \\
\text { (actually rotational } \\
\text { kinetic energy) }
\end{array}
\end{gathered} \quad \mu=\frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}
$$

We are going to derive $V_{0}(x)$ directly from $G(v), B(v)$ data. This is the only direct spectrum to potential energy function inversion method! WKB quantization is the basis for this. It is easy to go from $V_{0}(x)$ to $G(v)$ and $B(v)$, but RKR is special. Many methods work in the opposite direction to get $\mathrm{G}(\mathrm{v})$ and $\mathrm{B}(\mathrm{v})$ from $\mathrm{V}_{0}(x)$. We start with the WKB quantization condition:

$$
\int_{x_{-}\left(E_{v}\right)}^{x_{+}\left(E_{\nu^{\prime}}\right)} p_{E_{v}}\left(x^{\prime}\right) d x^{\prime}=(h / 2)(v+1 / 2) \quad v=0,1, \ldots \# \text { of nodes }
$$

In this equation, what we know $\left(\mathrm{E}_{\mathrm{v}}\right)$ and what we want $(\mathrm{V}(\mathrm{x})$ and x at turning points) are hopelessly intermixed. There is a trick to disentangle them!

$$
A(E, J) \equiv \int_{X_{-}(E, J)}^{X_{+}(E, J)}\left[E-V_{J}\left(X^{\prime}\right)\right] d x^{\prime}
$$

but, still, we know neither $\mathrm{V}_{\mathrm{J}}(\mathrm{x})$ nor $\mathrm{x}_{ \pm}(\mathrm{E}, \mathrm{J})$!
Roadmap: 1. Show that $\frac{\partial \mathrm{A}}{\partial \mathrm{E}}$ and $\frac{\partial \mathrm{A}}{\partial \mathrm{J}}$ are numerically evaluable integrals (via WKB
data input $Q C$ involving only $E_{V, J}$ information
here
2. independently, $\frac{\partial \mathrm{A}}{\partial \mathrm{E}}$ and $\frac{\partial \mathrm{A}}{\partial \mathrm{J}}$ determine

2 eqs. in 2 unknowns give $\left[x_{+}(E, J)-x_{-}(E, J)\right]$ and $\left[\frac{1}{x_{+}(E, J)}-\frac{1}{x_{-}(E, J)}\right]$ turning points

Do \#2 first because it is so easy

$$
\begin{aligned}
& \frac{\partial \mathrm{A}}{\partial \mathrm{E}}=\frac{\partial}{\partial \mathrm{E}}\left[\int_{\mathrm{X}_{-}(\mathrm{E}, \mathrm{~J})}^{\mathrm{x}_{+}(\mathrm{E}, \mathrm{~J})}\left[\mathrm{E}-\mathrm{U}\left(\mathrm{x}^{\prime}\right)-\frac{\hbar^{2} \mathrm{~J}(\mathrm{~J}+1)}{2 \mu \mathrm{x}^{\prime 2}}\right] \mathrm{dx}\right] \\
& =\int_{\mathrm{X}_{-}(\mathrm{E}, \mathrm{~J})}^{\mathrm{X}+(\mathrm{E}, \mathrm{~J})} 1 \mathrm{dx} \mathrm{x}^{\prime}+\underbrace{\sqrt{0}+}_{\text {contributions from } \frac{\left.\partial x^{\prime}+\mathrm{E}, \mathrm{~J}\right)}{\partial \mathrm{E}}} \\
& \text { are zero because integrand is } 0 \\
& \text { at both turning points }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\therefore \frac{\partial A}{\partial E}=x_{+}(E, J)-x_{-}(E, J)\right]! \\
& \begin{aligned}
\frac{\partial \mathrm{A}}{\partial \mathrm{~J}} & =\frac{\partial}{\partial \mathrm{J}}\left[\int_{\mathrm{x}_{-}}^{\mathrm{x}_{+}(\mathrm{E}, \mathrm{~J})}(\mathrm{E})\right.
\end{aligned} \\
& \quad=-\frac{\hbar^{2}}{2 \mu} \int_{\mathrm{X}_{-}}^{\mathrm{X}_{+}}(\mathrm{E}, \mathrm{E}, \mathrm{~J})
\end{aligned}
$$

$$
\frac{\partial A}{\partial J}=-\frac{\hbar^{2}(2 J+1)}{2 \mu}\left[\frac{1}{x_{+}(E, J)}-\frac{1}{x_{-}(E, J)}\right]
$$

So, if we can evaluate these derivatives from E_{vJ} data, we have $\mathrm{V}_{\mathrm{J}}(\mathrm{x})$!
some clever manipulations to put $\mathrm{A}(\mathrm{E}, \mathrm{J})$ into convenient form (see nonlecture notes on pages $8-5,6,7$)

$$
\begin{array}{ll}
A(E, J)=\int_{x_{-}(E, J)}^{x_{+}(E, J)}\left[E-V_{J}\left(x^{\prime}\right)\right] d x^{\prime} & \text { (change variables from } \mathrm{x} \text { to } \mathrm{v} \text {) } \\
A(E, J)=2 \pi \int_{v\left(E_{E v i v}, J\right)}^{v(E, J)}\left[E-E_{V J}^{\prime}\right]^{1 / 2} & \text { skipped steps are } \\
\text { on pages 8-5, 6, 7. }
\end{array}
$$

this integral could be evaluated at any E, but we really only want $\frac{\partial \mathrm{A}}{\partial \mathrm{E}}$ and $\frac{\partial \mathrm{A}}{\partial \mathrm{J}}$. Evaluate these derivatives at $\mathrm{J}=0$.

$$
\begin{aligned}
& \frac{\partial A}{\partial E}=\pi \int_{v\left(E_{\min }, J\right)}^{v(E, J)}\left[E-E_{v J}^{\prime}\right]^{-1 / 2} d v+0+0<\overbrace{1}
\end{aligned} \begin{aligned}
& \begin{array}{l}
\text { lower limit } \\
\text { independent of } \mathrm{E}
\end{array} \\
& \begin{array}{l}
\mathrm{integrand}=0 \\
\text { at upper limit }
\end{array} \\
& \begin{array}{l}
\downarrow\left(\mathrm{E}_{\min }, \mathrm{J}\right)=-\frac{1}{2}-\frac{\mathrm{Y}_{00}}{\omega_{\mathrm{e}}} \\
\text { defined so that } \mathrm{G}\left(\mathrm{v}_{\min }\right)=0 \text { this occurs at } \mathrm{v}_{\min } \neq-1 / 2
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{rl}
\mathrm{G}(\mathrm{v}) & =\mathrm{Y}_{00}+\omega_{\mathrm{e}}(\mathrm{v}+1 / 2) \\
0 & =\mathrm{G}\left(\mathrm{v}_{\min }\right)=\mathrm{Y}_{00}+\omega_{\mathrm{e}}\left(\mathrm{v}_{\min }+1 / 2\right) \\
-\frac{\mathrm{Y}_{00}}{\omega_{\mathrm{e}}} & =\mathrm{v}_{\min }+1 / 2 \\
\mathrm{v}_{\text {min }} & =-\frac{\mathrm{Y}_{00}}{\omega_{\mathrm{e}}}-\frac{1}{2}
\end{array}\right]} \\
& \text { [} \mathrm{v}_{\text {min }} \text { is slightly different from }-1 / 2 \text {] } \\
& \text { for } \mathrm{J}=0 \quad \mathrm{E}_{\mathrm{v}, \mathrm{~J}}^{\prime}=\mathrm{G}(\mathrm{v}) \\
& Y_{00}=\frac{B_{e}-\omega_{e} x_{e}}{4}+\frac{\alpha_{e} \omega_{e}}{12 B_{e}}+\left[\frac{\alpha_{e} \omega_{e}}{12 B_{e}}\right]^{2} \frac{1}{B_{e}} \\
& \left.\frac{\partial A}{\partial E}=\pi \int_{-1 / 2-Y_{00} / \omega_{e}}^{v(E)} \frac{\text { data }}{[E-G(v)}\right]^{-1 / 2} d v \equiv 2 f(E)
\end{aligned}
$$

evaluate this integral numerically at any E.
[Singularity at upper limit of integration fixed by change of variable: Zeleznik $J C P$

$$
\begin{aligned}
\left.\frac{\partial A}{\partial J}\right|_{J=0} & =\pi \int_{-1 / 2-Y_{00} / \omega_{e}}^{v(E)}[E-G(v)]^{-1 / 2} \frac{\partial E}{\partial J} d v+0+0 \\
E & =B_{v} J(J+1) \\
\frac{\partial E}{\partial J} & =\left.B_{v}(2 J+1) \quad \frac{\partial E}{\partial J}\right|_{J=0}=B_{v}
\end{aligned}
$$

∂A data \longleftarrow Use $G(v)$ to get v as a continuous function of E .
$\left.\therefore \frac{\partial A}{\partial J}\right|_{J=0}=\pi \int_{-1 / 2-Y_{00} / \omega_{e}}^{v(E)}[E-G(v)]_{\nwarrow_{v}^{1 / 2}}^{-1} B_{\substack{~ d a t a ~}} d v \equiv-\pi 2 g(E)$
(again, a nonfatal singularity at upper limit of integration)
$f(E)$ and $g(E)$ are "Klein action integrals" which are jointly determined by empirical $G(v)$ and $B(v)$ functions.

Nonlecture derivation of this useful form of $A(E, J)$:
$\mathrm{A}(\mathrm{E}, \mathrm{J})=2 \pi \int_{v\left(E_{\text {min }}, J\right)}^{v(E, J)}\left[E-E_{v J}^{\prime}\right]^{1 / 2} d v$

Begin here:

$$
\mathrm{A}(\mathrm{E}, \mathrm{~J})=\int_{\mathrm{X}_{-}(\mathrm{E}, \mathrm{~J})}^{\mathrm{x}_{+}(\mathrm{E}, \mathrm{~J})}\left[\mathrm{E}-\mathrm{V}_{\mathrm{J}}\left(\mathrm{x}^{\prime}\right)\right] \mathrm{dx}^{\prime}
$$

an integral identity: $\quad b-a=\frac{2}{\pi} \int_{a}^{b}\left(\frac{x-a}{b-x}\right)^{1 / 2} d x$
let $\quad b=E$

$$
\mathrm{a}=\mathrm{V}_{\mathrm{J}}(\mathrm{x})
$$

$$
\mathrm{x}=\mathrm{E}_{\mathrm{vJ}}^{\prime}
$$

so that $\left(\frac{x-a}{b-x}\right)=\frac{E_{v J}-V_{J}(x)}{E-E_{v J}}$

$$
\therefore \quad A(E, J)=\int_{x_{-}(E, J)}^{x_{+}(E, J)}[b-a] d x^{\prime}
$$

Now insert the integral identity

$$
\begin{aligned}
A(E, J) & =\int_{x_{-}(E, J)}^{x_{+}(E, J)}\left(\frac{2}{\pi} \int_{a}^{b}\left[\frac{x-a}{b-x}\right]^{1 / 2} d x\right) d x^{\prime} \\
& =\int_{x_{-}(E, J)}^{x_{+}(E, J)}\left(\frac{2}{\pi} \int_{V_{J}(x)}^{E}\left[\frac{E_{v J}^{\prime}-V_{J}\left(x^{\prime}\right)}{E-E_{v J}^{\prime}}\right]^{1 / 2} d E_{v_{J}}^{\prime}\right) d x^{\prime}
\end{aligned}
$$

put in values of a, b, and x

Reverse order of integration and recognize the WKB QC in disguise:

$$
=\frac{2}{\pi} \int_{V_{J}(x)}^{E}\left(\int_{x_{-}(E, J)}^{x_{+}(E, J)}\left[\frac{E_{v J}^{\prime}-V_{J}\left(x^{\prime}\right)}{E-E_{v J}^{\prime}}\right]^{1 / 2} d x^{\prime}\right) d E_{v J}^{\prime}
$$

Numerator of dx' integral is QC — insert QC and then integrate by parts. Denominator is independent of x^{\prime}, so insert QC

$$
\begin{aligned}
\int_{x_{-}(E, J)}^{x_{+}(E, J)}\left[E^{\prime}-V\left(x^{\prime}\right)\right]^{1 / 2} d x^{\prime} & =(2 \mu)^{-1 / 2} \int_{x_{-}}^{x_{+}} p\left(x^{\prime}\right) d x^{\prime} \\
& =(2 \mu)^{-1 / 2} \frac{h}{2}(v+1 / 2)
\end{aligned}
$$

$\therefore A(E, J)=\left(\frac{2}{\pi}\right)(2 \mu)^{-1 / 2} \frac{h}{2} \int_{E_{\min }}^{E}\left[\frac{v\left(E^{\prime}, J\right)+1 / 2}{\left(E-E_{v J}^{\prime}\right)^{1 / 2}}\right] d E_{v J}^{\prime} \quad * *$
** integrate by parts

$$
\begin{aligned}
& f^{\prime}=\left(E-E_{v J}^{\prime}\right)^{-1 / 2} \\
& f=-2\left(E-E_{v J}^{\prime}\right)^{1 / 2} \\
& g=\left[v\left(E_{v J}^{\prime}, J\right)+1 / 2\right]
\end{aligned}
$$

$$
g^{\prime}=\frac{d v}{d E^{\prime}}, \quad \text { which is known from } \mathrm{E}_{\mathrm{vJ}} \quad\left(\text { not a type because the variable is } E_{v J}^{\prime}, \operatorname{not} E\right)
$$

$$
\mathrm{A}(\mathrm{E}, \mathrm{~J})=\underbrace{\left.\mathrm{fg}\right|_{\mathrm{E}^{\prime}=\mathrm{E}_{\text {min }}} ^{\mathrm{E}^{\prime}=\mathrm{E}}}_{=0 \text { at both limits }}+\left(\frac{2 \mathrm{~h}^{2}}{\mu}\right)^{1 / 2} \int_{\mathrm{E}_{\text {min }}}^{\mathrm{E}} 2\left(\mathrm{E}-\mathrm{E}^{\prime}\right)^{1 / 2} \frac{\mathrm{dv}}{\mathrm{dE}^{\prime}} \mathrm{dE}^{\prime}
$$

(caution: f and g here are not Klein' s action integrals)
*** Change variables from $d E^{\prime}$ to $d v{ }^{\prime}$

$$
d v=\frac{d v}{d E^{\prime}} d E^{\prime}
$$

limits of integration become $\int_{v\left(E_{\text {min }}, J\right)}^{v(E, J)}$
finished: $A(E, J)=2 \pi \int_{v\left(E_{\min }, J\right)}^{v(E, J)}\left[E-E_{v^{\prime}, J}^{\prime}\right]^{1 / 2} d v^{\prime}$
we have independent evaluations of both $f(E)$ and $g(E)$ from $G(v)$ and $B(v)$ data

$$
\text { one leads to } \quad x_{+}(E, 0)-x_{-}(E, 0)=2 f(E)
$$

$$
\frac{1}{x_{+}(\mathrm{E}, 0)}-\frac{1}{x_{-}(\mathrm{E}, 0)}=-2 g(\mathrm{E})
$$

$\begin{array}{ll}\begin{array}{l}\text { pair of turning } \\ \text { points }\end{array} & (E, 0)=\left[f(E) / g(E)+f(E)^{2}\right]^{1 / 2} \pm f(E)\end{array} \begin{aligned} & \text { from quadratic } \\ & \text { formula }\end{aligned}$
so we get a pair of turning points at each E. Not restricted to E's with integer v's! can use very fine grid of E's.

V(x)	\bigcirc	\bigcirc	connect the dots!
	0	0	
	0	0	
	0	\bigcirc	

Robert LeRoy: modern, n-th generation RKR program at http://leroy.uwaterloo.ca/programs.html

Download program, instructions, and sample data.

RKR does not work for polyatomic molecules because $E-V(\underset{\sim}{Q})$ does not determine the multicomponent vector $\overrightarrow{\mathbf{P}}$ (one component for each normal mode).

What does $\psi(x)$ look like at very high v ?

* lots of nodes (v nodes)
* small lobe at inner turning point. Why?
* large lobe at outer turning point. Why?

$$
\text { Hint: Force }=-\frac{d V(x)}{d x}
$$

At sufficiently large v , it is certain that $\psi(\mathrm{x})$ is dominated by outer-most lobe and any expectation value of a function of x , such as $\mathrm{V}(\mathrm{x})$, will be dominated by the region of the outer turning point. Since the vibrational Schrödinger equation contains $\mathrm{V}(\mathrm{x})$, it is evident that E_{v} at high v should be determined primarily by the long range part of $\mathrm{V}(\mathrm{x})$ (and should be insensitive to details near both x_{e} and the inner turning point).

$$
\therefore \quad A(E, J)=\int_{x_{x}(E, J)}^{x_{x}(E, J)}[b-a] d x^{\prime}
$$

(See page 8-5)
What do we know about covalent bonding?
ATOMIC ORBITAL OVERLAP IS REQUIRED!
NEGLIGIBLE OVERLAP at large $\mathrm{x}, \mathrm{V}(\mathrm{x})$ at large x is determined by properties of isolated atoms: dipole moment, polarizability - return to this later when we do perturbation theory.

The lobe of $\psi(\mathrm{x})$ that we use to sample $\mathrm{V}(\mathrm{x})$ sees nearly pure atomic electronic properties.

It is always possible to predict what is the longest range term in $\mathrm{V}(\mathrm{x})=\mathrm{C}_{\mathrm{n}} \mathrm{x}^{-\mathrm{n}}$ where the longest range term is the one with SMALLEST n .

Quick review of the Long-Range Theory
"Level" at the "top" of
the potential
ε_{v} is the binding energy
of v-th level, $\varepsilon_{v} \equiv E_{v_{D}}-E_{v}$
at $\mathrm{J}=0 \quad \mathrm{~V}_{0}(\mathrm{x})=\mathrm{U}(\mathrm{x})=-\mathrm{C}_{\mathrm{n}} \mathrm{x}^{-\mathrm{n}} \quad$ at long range (large x)

$$
\begin{aligned}
& \mathrm{U}(\infty)=0 \equiv \mathrm{E}_{\mathrm{v}_{\mathrm{D}}} \\
& \mathrm{U}\left(\mathrm{x}_{\mathrm{e}}\right)=-\mathrm{D}_{\mathrm{e}} \\
& \mathrm{x}_{+}(\mathrm{v})=\left(-\mathrm{C}_{\mathrm{n}} / \mathrm{E}_{\mathrm{v}}\right)^{1 / \mathrm{n}} \\
& \mathrm{x}_{+}\left(\mathrm{v}_{\mathrm{D}}\right)=\infty
\end{aligned} \quad\left[\mathrm{E}_{\mathrm{v}}=\mathrm{V}\left(\mathrm{x}_{+}(\mathrm{v})\right)=-\mathrm{C}_{\mathrm{n}} \mathrm{x}_{+}^{-\mathrm{n}}\right]
$$

binding energy: $\varepsilon_{v}=E_{v_{D}}-E_{v}=C_{n} x_{+}^{-n}$

How many bound levels are there in the potential? WKB Quantization Condition:

$$
\frac{h}{2}\left(v_{D}+1 / 2\right)=\int_{x_{-}\left(v_{D}\right)}^{x_{+}\left(v_{D}\right)=\infty} \quad p_{D}\left(x^{\prime}\right) d x^{\prime}
$$

Now we do not know v_{D}, C_{n}, or D_{e}, but we do know n and know that E_{v} will be primarily determined by the long-range part of $\mathrm{V}(\mathrm{x})$ near v_{D}. So, for any E_{v} we expect that it will be possible to derive a relationship between

$$
\left(v_{D}-v\right) \# \text { of levels below highest bound level }
$$

and

$$
\left(E_{V_{D}}-E_{v}\right) \quad \text { binding energy. }
$$

By some clever tricks you may discover on Problem Sets \#4 and \#5, we find

$$
v_{D}-v=a_{n} \varepsilon_{v}^{\frac{n-2}{2 n}}
$$

This equation tells us how to plot $\mathrm{E}_{\mathrm{v}} \mathrm{vs}$. v to extrapolate to v_{D} and then to obtain an accurate value of D_{e} from a linear plot near dissociation.
$V(x)=C_{n} x^{-n}$ for 2 Atoms [CTDL, page 283]
$\mathrm{n}=1$ Both atoms are charged
2 One Atom is charged, the other atom has permanent electric dipole
32 identical uncharged atoms with transition dipole moments e.g. $\mathrm{Na}\left({ }^{2} \mathrm{P}\right)+\mathrm{Na}\left({ }^{2} \mathrm{~S}\right)$
4 charge-induced dipole and dipole-quadrupole
5 quadrupole- quadrupole
6 induced dipole-induced dipole (London dispersion)

The interaction with smallest n is dominant at long-range
Not only is the limiting value of n known, but also C_{n} is known because it is calculable from a measurable property of the free atom. Many molecular states are described at long range by the same C_{n} 's! Ultra-cold collisions are now used to determine $\mathrm{V}(\mathrm{x})$ to very large x . This has now become the best route to the properties of separated atoms!

Mostly, long-range theory has been used as a guide to extrapolation to accurate dissociation energy (relevant to determination of ΔH_{f}°). Now Bose condensates. Molecule trapping.
x^{-1} and x^{-2} potentials have ∞ number of bound levels. $\mathrm{x}^{-3}, \mathrm{x}^{-5}$, and x^{-6} potentials have finite number, and the number of levels breaks off more abruptly as n increases.

action integral affected more by wider classical $\Delta \mathrm{x}$ region than by deeper $\Delta \mathrm{E}$ binding region because $\mathrm{p} \propto(\mathrm{E}-\mathrm{V}(\mathrm{x}))^{1 / 2}$

This means (equation at bottom of page 8-9) that if we plot (given that we can predict n with certainty) as shown below.

0		$\mathrm{n}-2$
		$\left(E_{v_{D}}-E_{V}\right)^{\frac{2 n}{2 n}}$
n	$2 n$	d $v_{\text {D }}$ very
3	1/6	accurately

$5 \quad 3 / 10$
much better than Birge - Sponer plot, which
$6 \quad 1 / 3 \quad$ is valid only for a Morse potential
7 5/4

for Morse potential

$$
G(\mathrm{v})=\omega_{e}(\mathrm{v}+1 / 2)-\omega_{e} x_{e}(\mathrm{v}+1 / 2)^{2}
$$

Morse Potential

$$
V_{0}(x)=D_{e}\left[1-e^{-A x}\right]^{2}
$$

$$
\Delta G(\mathrm{v}+1 / 2)=G(\mathrm{v}+1)-G(\mathrm{v})=\omega_{e}-\omega_{e} X_{e}(2 \mathrm{v}+2) \text { decreasing to } 0 \text { as } \mathrm{v} \text { increases }
$$

$$
\text { when } \Delta G(\mathrm{v}+1 / 2)=0, \omega_{e}=\omega_{e} X_{e}(2 \mathrm{v}+2)
$$

$$
\mathrm{v}_{D}=\frac{\omega_{e}}{2 \omega_{e} x_{e}}-1 \quad \mathrm{v}_{D} \text { is noninteger \# of bound vibrational levels }
$$

$$
D_{e}=G\left(\mathrm{v}_{D}\right)=\frac{1}{4}\left[\frac{\omega_{e}^{2}}{\omega_{e} X_{e}}-\omega_{e} X_{c}\right]
$$

$$
=\left(\mathrm{v}_{D}+1\right) \frac{\omega_{e}}{2}-\frac{\omega_{e} x_{e}}{4} \approx\left(\mathrm{v}_{D}+1\right) \frac{\omega_{e}}{2}
$$

But Morse potential inevitably has incorrect long-range form!

Which potential curve is longer range? Morse or $\mathrm{C}_{\mathrm{n}} \mathrm{x}^{-\mathrm{n}}$? Take ratio of binding energy at large x .

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{-C_{n} x^{-n}}{D_{e}\left[1-e^{-A x}\right]^{2}-D_{e}} & =\lim _{x \rightarrow \infty} \frac{-C_{n} x^{-n}}{D_{e}\left[e^{-2 A x}-e^{-A x}\right]} \\
& =\lim _{x \rightarrow \infty} \frac{-C_{n} x^{-n} e^{2 A x}}{D_{e}-2 D_{e} e^{A x}}< \\
& =\lim _{x \rightarrow \infty} \frac{C_{n} x^{-n} e^{A x} \rightarrow \infty}{2 D_{e}}<
\end{aligned}
$$

This means that Morse potential binding energy gets small faster than $\mathrm{C}_{\mathrm{n}} \mathrm{x}^{-\mathrm{n}}$ for any value of n.

$G(v+1)-G(v)$ will get small faster for Morse potential. Plot $\Delta G(v+1 / 2)$ vs. v.

Dissociation energy is usually underestimated by linear Birge-Sponer extrapolation. Long-range plot of correct (a priori known) power of $E_{v_{D}}-E_{v}$ gives more accurate dissociation energy.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

