
 

   
 

 

 

         

  

  

 

  

 

  

 

 

 

    
 

 

 

 

  

5.73 Lecture #8 Rydberg Klein Rees 8 - 1 
Last time: WKB quantization condition for bound eigenstates of almost 

general V(x) — Connections into bound region from left and right 

WKB Quantization Condition 
x+ (E ) h Error: no more than one extrapE (x ′)dx ′ = (n +1/ 2) ∫x− (E ) 2 level, raise E, p↑, nodes get closer 

1/2 togetherpE (x) = ⎡⎣2m (E −V (x))⎤⎦ 
En without ψn ! 

timing of w.p. as it other stuff too 
But where do we get V(x)? moves on V(x)? 
Certainly not from femtochemistry!
From FREQUENCY DOMAIN SPECTROSCOPY 

Ev,J → V(x)? Energy levels as function of quantum numbers → potential 
energy as function of coordinate, V(x). 

RKR method 

Next time: Numerical Integration of 1-D Schr. Eq. — See handouts. 
Then we will begin working toward matrix picture 
We will need background in Chapter 2 of CTDL, 

pages 94-121 soon, apges 121-144 by next week 
Postulates and Theorems will not be covered except as needed for solving problems 

Today: Ev,J → spectroscopic notation : cm–1 units, T electronic 

Area: A(E,J) = 

V(x) 

G vibrational 

F rotationalE 

xxe 
Equilibrium: 

dV 
= 0 → x edx 

∂A ∂A 1 1 
∂J

 respectively determine x+ (E ) − x− (E ) and 
∂E

, 
x+ (E ) 

− 
x− (E )

vibrational constants 

∂A ∂A
WKB Quantum Condition applied to ← G(v),B(v) used to determine x± (E). 

∂E 
, 
∂J 

rotational constants 

Long Range Theory: Ultra Cold Collisions: Atom in Molecule 
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5.73 Lecture #8 Rydberg Klein Rees 8 - 2 
Someday you will discover that the energy levels of a diatomic 
molecule are given by 

EevJ / hc = Te + G(v) + Fv (J ) cm-1 
electronic vibration rotation 
= νe + ⎡⎣Y00 + ωe (v +1/ 2) −ωexe (v + 1/ 2)2 +…⎤⎦ 

G(v) 

+[Be −αe (v + 1/ 2) +…]J (J +1) − DJ 2 (J + 1)2 

B(v) 

RKR requires only G(v) and B(v) spectroscopic data to get VJ(x) 

!2J(J + 1)
where V J(x) = U(x) + x ≡ R − Re 

J-dependent bare 2µx2 
effective potential centrifugal barrier m1m2
potential µ = (actually rotational 

kinetic energy) m1 + m2 

We are going to derive V0(x) directly from G(v), B(v) data. This is the only
direct spectrum to potential energy function inversion method! WKB 
quantization is the basis for this. It is easy to go from V0(x) to G(v) and B(v), but
RKR is special. Many methods work in the opposite direction to get G(v) and
B(v) from V0(x). We start with the WKB quantization condition: 

x+ (Ev ) (x′)dx′ = (h / 2)(v +1/ 2) v = 0,1,…# of nodes ∫x− (Ev ) 
pEv 

In this equation, what we know (Ev) and what we want (V(x) and x at turning points)
are hopelessly intermixed.  There is a trick to disentangle them! 

x+ (E,J) 
A(E,J) ≡ [ E – VJ(x )′ ]dx′∫x− (E,J) 

area at E 
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but, still, we know neither VJ(x) nor x±(E,J)! !

5.73 Lecture #8 Rydberg Klein Rees 8 - 3 

but, still, we know neither VJ(x) nor x±(E,J)! 

∂A ∂A
Roadmap: 1. Show that and are numerically evaluable integrals (via WKB 

data input 
here ∂A ∂A 

∂E ∂J 
QC) involving only Ev,J information 

2. independently, and determine
∂E ∂J 

⎡ 1 1 ⎤
2 eqs. in 2 [ x+(E, J)− x− (E, J)] and ⎢ − ⎥
unknowns give ⎣x+ (E, J) x− (E,J)⎦ 
turning points 

Do #2 first because it is so easy 

∂A ∂ x + (E,J) x ) − 
!2 J(J + 1) ⎤ ⎤ 

= ⎢
⎡
∫ ⎢

⎡
E – U( ′ ⎥dx′⎥x− (E,J ) ∂E ∂E ⎢⎣ ⎣ 2 µx′2 ⎦ ⎥⎦ 

x + (E,J) = 1dx′ + 0 + 0∫x− (E,J ) 

∂x± (E,J) 
contributions from ∂E 

are zero because integrand is 0 
at both turning points 

∂A∴ = x+ (E ,J ) − x− (E ,J ) !∂E 

∂A ∂ ⎡ (E,J) ⎡ !2J(J + 1)⎤ ⎤x += ⎢∫ ⎢E – U(x ′) − ⎥dx′⎥x−(E,J) ∂J ∂J ⎢⎣ ⎣ 2µx′2 ⎦ ⎥⎦ 

− 
!2 

x + (E,J) 2 J + 1 = dx′ + 0 + 0
2µ ∫x− (E,J ) x′2 "#$ 

integrand = 0 at x± 

∂A !2 (2J +1) ⎡ 1 1 ⎤ 
= − 

(E ,J ) 
−

∂J 2µ ⎣
⎢ x+ x− (E ,J ) ⎦

⎥ 

So, if we can evaluate these derivatives from EvJ data, we have VJ(x)! 
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5.73 Lecture #8 Rydberg Klein Rees 8 - 4 
some clever manipulations to put A(E,J) into convenient form 
(see nonlecture notes on pages 8-5,6,7) 

x+ ( E ,J )
A(E, J ) = ∫ ⎡⎣E –VJ (x′)⎤⎦ dx′ (change variables from x to v)

x− ( E ,J ) 

1/2 skipped steps are shown
⎡ ⎤v( E ,J ) on pages 8-5, 6, 7.A(E, J ) = 2π ⎢E – %⎥ dv∫ EvJ ′ v( Emin ,J )

!#"#$ ⎢ ⎥⎣ data ⎦data 

this integral could be evaluated at any E, but we really only 
∂A ∂Awant and . Evaluate these derivatives at J = 0.
∂E ∂J 

∂ A v( E ,J ) −1/2 
= π ⎡⎣ E – ⎤⎦ dv + 0 + 0∫ EvJ ′ ∂E v( Emin ,J ) 

lower limit 
independent of E

integrand = 0
1 Y00 at upper limitv(Emin ,J) = − −
2 ωe 

defined so that G(vmin) = 0 this occurs at vmin ≠ –1/2 

− 

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢ 

G(v) = Y00 + ωe (v + 1 / 2) 
0 = G(vmin ) = Y00 + ωe( vmin + 1 / 2) 

⎤ 
⎥
⎥
⎥
⎥
⎥
⎥
⎥ 

Y00 = vmin + 1 / 2
ωe 

Y00 − 
1 
2 

= −vmin [vmin is slightly different from –1/2]
⎣ ωe ⎦ 

B −ω x α ω ⎡α ω ⎤
2

1e e e e e e eY00 = + + ⎢ ⎥4 12B 12B B⎣ ⎦for J = 0 E′ v,J = G(v) e e e 

∂ A data 
−1/2 v( E ) 

= π ⎡⎣ E – G(v)⎤⎦ dv ≡ 2 f (E)∫−1/2−Y00 /ωe∂E 
data 

evaluate this integral numerically at any E. 

[Singularity at upper limit of integration fixed by change of variable: Zeleznik JCP 
42, 2836 (1965).] updated 8/13/20 1:05 PM 
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5.73 Lecture #8 Rydberg Klein Rees 8 - 5 
v( E )⌠ −1/2 ∂E∂ A = π⎮ E − G(v) dv + 0 + 0⎮ 

⎡⎣ ⎤⎦∂J ⌡−1/2−Y00 /ω ∂J 

E = Bv J (J +1) 

∂E ∂E 

J =0 e 

= Bv (2J +1) = B v∂J ∂J J =0 

data Use G(v) to get v as a continuous function of E. 

v( E )∂ A ⌠∴ = π⎮ E − G(v) 
−1/2 

B dv ≡ −π2g(E)
⌡−1/2−Y00 /ω 

⎡⎣ ⎤⎦ v∂J eJ =0 
data 

(again, a nonfatal singularity at upper limit of integration) 
f(E) and g(E) are “Klein action integrals” which are jointly determined by 
empirical G(v) and B(v) functions. 

Nonlecture derivation of this useful form of A(E, J ) : 
v( E ,J ) 1/2 ⌠A(E,J)=2π⎮ E − dv⎡⎣ EvJ ′ ⎤⎦⌡v( Emin ,J ) 

x + (E,J ) 
Begin here: A(E, J ) = ∫ [E − VJ(x )′ ]dx ′ x− ( E,J) 

1/2 
2 b ⎛ x − a ⎞an integral identity: b − a = dx∫a ⎝⎜ ⎠⎟π b − x 

let b = E 
a = VJ( x) 
x = E′ vJ 

⎛ x -a ⎞ E vJ − VJ(x)so that ⎜ ⎟ = 
⎝ b - x ⎠ E − E vJ 

x+ (E,J) ∴ A(E,J) = ∫x− (E,J)[b − a]dx′ 
Now insert the integral identity 
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⎜ ⎟

5.73 Lecture #8 Rydberg Klein Rees 8 - 6 
x + (E,J ) 

⎜ ⎟ d 
x− (E,J) 

(E,J ) 
1/ 2 

⎜ ⎟
VJ(x)x− (E,J) 

⎟
⎟ 
⎠ 

⎤ 

⎟
⎠ 

⎮
⎮
⌡ 

⎛
⎜
⎝ 

⎛
⎜
⎜ 
⎝ 

⎮⎮⌡ 

⌠b 

⎢ 
a 

⎡
⎣⎮⌡ 

1/ 2⌠ ⎞2 x − a 
⎥ 
⎤ 
⎦

A(E, J ) = dx x′ put in values of a, b, and x
b − xπ 

x + E⌠ ⎞⌠ ⎡E′vJ − VJ(x ′) 
E − E′ vJ 

⎥ 
⎥⎦ 

dE′vJ 
2⎮ 

⎮⎮
⌡ 

dx′⎢ 
⎢⎣ 

= 
π 

Reverse order of integration and recognize the WKB QC in disguise: 

E⌠ ⎛ x+ (E,J) 1/2 ⎞
2 ⎮ ⎜

⌠ ⎡E′ vJ − VJ(x′)⎤ ⎟= ⎮ ⎢ ⎥ dx′ dE′ vJπ ⎮⎮ ⎜⌡⎮ ⎣ E − E′ vJ ⎦ ⎟
⌡ ⎝ x− (E,J) ⎠V J(x) 

Numerator of dx′ integral is QC — insert QC and then integrate by parts. 
Denominator is independent of x′, so insert QC 

x+ (E,J) x+⌠ ]1/2d = (2µ )−1/2⌠⎮ [E′ − V(x′) x′ ⎮ p(x′)dx′ ⌡ ⌡x− (E,J) x− 

= (2µ )−1/2 h (v + 1/ 2)
2 

E⌠ ⎡ ⎤ 
⎮ ⎢ E ,J) + 1/ 2 ⎥∴ A(E,J) = 

⎛
⎝
⎜ 2 ⎞

⎠
⎟( 2µ) −1/2 h 

⎮ ⎢ 
v( ′ 

)1/2 ⎥dE′ vJ ** E −π 2 
⌡ ⎣ ( E′vJ ⎦Emin 

** integrate by parts 

)−1/2
f ′ = ( E − EvJ ′ 

f = −2 E − )1/2( EvJ ′ 

g = ⎡⎣v( EvJ ′ , J ) +1/ 2⎤⎦ 

g′ = 
d
dv
E′ 

, which is known from EvJ (not a type because the variable is EvJ ′ , not E ) 

1/ 2 
E′ =E ⎛ 2h2 ⎞ ⌠ E 

)1/2 dv (caution: f and g here are
A(E, J ) = fg E′ + ⎜ ⎟ ⌡ 2( E − E′ dE′ not Klein’s action=Emin µ dE′ !#"#$ ⎝ ⎠ Emin integrals)=0 at both limits 
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5.73 Lecture #8 Rydberg Klein Rees 8 - 7 
*** Change variables from dE’ to dv’ 

d νd ν = dE ′ 
dE ′ 

v (E ,J )
limits of integration become ∫v(Emin ,J )

v (E ,J ) 1/2 
finished: A(E ,J ) = 2π∫ ⎡⎣E − Ev ′′, J ⎤⎦ d ν′

v(Emin ,J ) 

we have independent evaluations of both f(E) and g(E) from G(v) and B(v) data 

one leads to x+ (E,0) − x− (E,0) = 2f(E)
1 1

− 
x− (E,0) 

= –2g(E)
x+ (E,0) 

pair of turning 1/2 
points x± (E,0) = [f(E)/ g(E)+ f(E)2 ] ± f(E) from quadratic

formula 

so we get a pair of turning points at each E. Not restricted to E’s with integer v’s! 

can use very fine grid of E's. 

V(x) connect the dots! 

Robert LeRoy:  modern, n-th generation RKR program at  

      http://leroy.uwaterloo.ca/programs.html 

Download program, instructions, and sample data. 

RKR does not work for polyatomic molecules because E −V (Q ) does
" !

not determine the multicomponent vector P (one component for each
normal mode). 
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5.73 Lecture #8 Rydberg Klein Rees 8 - 8 
W.C. Stwalley CPL 6, 241 (1970) 

Long-Range Molecules (weak perturbation of atomic properties) 

R.J. Bernstein & R.LeRoy JCP 52, 3869 (1970) 

hard 
turning 
point 

soft turning point 

What does ψ(x) look like at very high v? 
* lots of nodes (v nodes) 
* small lobe at inner turning point.  Why? 
* large lobe at outer turning point.  Why? 

dV(x) Hint: Force =– 
dx 

At sufficiently large v, it is certain that �(x) is dominated by outer-most lobe 
and any expectation value of a function of x, such as V(x), will be dominated by 
the region of the outer turning point. Since the vibrational Schrödinger 
equation contains V(x), it is evident that Ev at high v should be determined 
primarily by the long range part of V(x) (and should be insensitive to details 
near both xe and the inner turning point). 

x+ (E ,J )∴ A(E ,J ) = ∫x− (E ,J ) [b − a]dx ′ (See page 8-5) 

What do we know about covalent bonding?
ATOMIC ORBITAL OVERLAP IS REQUIRED!
NEGLIGIBLE OVERLAP at large x, V(x)  at large x is determined by properties of 
isolated atoms: dipole moment, polarizability — return to this later when we do 
perturbation theory. 

The lobe of �(x) that we use to sample V(x) sees nearly pure atomic electronic 
properties. 

It is always possible to predict what is the longest range term in V(x) = Cnx–n where 
the longest range term is the one with SMALLEST n. 

8
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5.73 Lecture #8 Rydberg Klein Rees 8 - 9 

Quick review of the Long-Range Theory 

x–(vD) 
x+(vD) = ∞# 

εv ≡ EvD 
− Ev 

x–(v) x+(v) vD is non-integer value of v 
of the “Level” at the “top” of

De the potential 

εv is the binding energy 
of v-th level, εv ≡ EvD 

− Ev 
xe 

at J = 0 V0(x ) = U(x ) = −Cnx −n at long range (large x) 
U(∞ ) = 0 ≡ E v D 

U( x e ) = −De 

)1/n x + (v) = ( −Cn E v −n[Ev = V(x+ (v)) = −Cnx+ ]
x + ( vD ) = ∞ 

−nbinding energy: εv = E v D 
− E v = Cnx + 

How many bound levels are there in the potential? WKB Quantization 
Condition: 

x+(vD )=∞h ⌠
⎮ 

2 
(vD +1/ 2) = pD (x′)dx′.⎮ 

⌡x− (vD ) 

Now we do not know vD, Cn, or De, but we do know n and know that Ev 
will be primarily determined by the long-range part of V(x) near vD. So, 
for any Ev we expect that it will be possible to derive a relationship 
between 

(vD – v) # of levels below highest bound level 
and (EvD 

− Ev ) binding energy. 
By some clever tricks you may discover on Problem Sets #4 and #5, we 
find 

n−2 
2n .vD −v = anεv 

This equation tells us how to plot Ev vs. v to extrapolate to vD and then to obtain 
an accurate value of De from a linear plot near dissociation. 
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5.73 Lecture #8 Rydberg Klein Rees 8 - 10 

V(x) = Cnx–n for 2 Atoms [CTDL, page 283] 

The interaction with smallest n is dominant at long-range 

Not only is the limiting value of n known, but also Cn is known because it is 
calculable from a measurable property of the free atom. Many molecular states 
are described at long range by the same Cn’s! Ultra-cold collisions are now used 
to determine V(x) to very large x. This has now become the best route to the 
properties of separated atoms! 

Mostly, long-range theory has been used as a guide to extrapolation to
° accurate dissociation energy (relevant to determination of ∆ H f ). Now 

Bose condensates. Molecule trapping. 

x–1 and x–2 potentials have ∞ number of bound levels. x–3, x–5, and x–6 

potentials have finite number, and the number of levels breaks off more 
abruptly as n increases. 

low nhigh n 

n → ∞# 

i.e., # of bound levels 

action integral affected more by wider classical ∆x region than by 
deeper ∆E binding region because p ∝ (E–V(x))1/2 
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5.73 Lecture #8 Rydberg Klein Rees 8 - 11 
This means (equation at bottom of page 8-9) that if we plot (given that we can 
predict n with certainty) as shown below. 

correct D: STRAIGHT LINE 
wrong D: because guess for EvD too high 

v 

vD 

wrong D: because guess for EvD too low 

n− 20 (EvD − Ev ) 2n 

n − 2 guessed known 

n 2n it is possible to determine D and vD very 
3 1/6 accurately 

5 3/10 
much better than Birge − Sponer plot,which 

6 1/3 is valid only for a Morse potential 

7 5/4 

∆G(v+1/2)=G(v+1) – G(v) Birge-Sponer: ∆G vs. v 

long linear 
extrapolation to vD 

(likely to be wrong!) 

•
0 v vD 

for Morse potential 

G(v) = ωe (v +1/ 2) −ωexe (v +1/ 2)2 

Morse Potential ΔG(v +1/ 2) = G(v +1) −G(v) = ωe −ωexe (2v + 2) decreasing to 0 as v increases 
when ΔG(v +1/ 2) = 0, ωe = ωexe (2v + 2) 

V0(x) = De 
⎡⎣1− e− Ax ⎤⎦ 

2 

vD = 
ωe −1 vD is noninteger # of bound vibrational levels 

2ωexe 

1 ⎡ ωe
2 ⎤

De = G (vD ) = ⎢ −ωexe ⎥4 ⎣ωexe ⎦ 

= (vD +1) ω 

2
e − ωexe ≈ (vD +1) ωe 

4 2 

But Morse potential inevitably has incorrect long-range form! 
updated 8/13/20 1:05 PM 
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5.73 Lecture #8 Rydberg Klein Rees 8 - 12 

Which potential curve is longer range? Morse or Cnx–n? Take ratio of binding 
energy at large x. 

− n − nlim −Cnx lim −Cnx 
= 2 −2 Ax − e− Ax x →∞ D 1− e− Ax − D x →∞ D ⎡⎣e ⎤⎦e 

⎡⎣ ⎤⎦ e e 

− n 2 Ax lim −Cnx e 
= 

x →∞ De − 2Dee
Ax 

dominant term 

lim Cn − n= x eAx →∞ 
x →∞ 2De 

This means that Morse potential binding energy gets small faster than Cnx–n for any 
value of n. 

Morse 

–Cnx–n 

G(v+1) – G(v) will get small faster for Morse potential. Plot ∆G(v + 1/2) vs. v. 

∆G(v+1/2)=G(v+1) – G(v) 

0 v vD 
Morse vD 

True 

linear Birge-Sponer 

Dissociation energy is usually underestimated by linear Birge-Sponer 
extrapolation. Long-range plot of correct (a priori known) power of − EvEvD
gives more accurate dissociation energy. 
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