5.73 Quiz 34

1.

* Use the standard order for np spin-orbitals on Page 30-4: $1\alpha, 1\beta, 0\alpha, 0\beta, -1\alpha, -1\beta$

- * Recall that $\langle ||a_1a_2|||F(i)|||a_1a_2||\rangle = \sum_i \langle a_i|f|a_i\rangle$ $\langle ||a_1b|||F(i)|||a_1a_2||\rangle = \langle b|f|a_2\rangle$ * The electronic states that arise from the p² electronic configuration are ¹D, ³P,
- and ¹S
- Construct the two Slater determinantal wavefunctions that correspond to A. $M_{J} = M_{L} + M_{s} = +2.$ [HINT: both $|LSJM_J = 2\rangle$ coupled states are single Slater determinants.] $|^{1}\mathrm{D}_{2}M_{I}=2\rangle =$ $|^{3}P_{2}M_{I}=2\rangle =$
- Calculate the two diagonal and one off-diagonal matrix elements of Β. $\mathbf{H}^{\text{SO}} = \sum_{I} a(r_i) \ell_i \cdot s_i :$ (i) $\langle {}^{1}\mathbf{D}_2 M_J = 2 | \zeta_p (\ell_{1z} \mathbf{s}_{1z} + \ell_{2z} \mathbf{s}_{2z}) | {}^{1}\mathbf{D}_2 M_J = 2 \rangle =$

(ii)
$$\langle {}^{3}P_{2} M_{J} = 2 | \zeta_{p} (\ell_{1z} \mathbf{s}_{1z} + \ell_{2z} \mathbf{s}_{2z}) | {}^{3}P_{2} M_{J} = 2 \rangle =$$

(iii)
$$\langle {}^{3}P_{2} M_{J} = 2 | \frac{1}{2} \zeta_{p} (\ell_{1-} \mathbf{s}_{1+} + \ell_{2-} \mathbf{s}_{2+}) | {}^{1}D_{2} M_{J} = 2 \rangle =$$

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.