5.73

Quiz 34

1.

* Use the standard order for np spin-orbitals on Page 30-4: $1 \alpha, 1 \beta, 0 \alpha, 0 \beta,-1 \alpha,-1 \beta$
* Recall that $\left.\langle |\left|a_{1} a_{2}\right||F(i)|\left|\left|a_{1} a_{2}\right|\right|\right\rangle=\sum_{i}\left\langle a_{i}\right| f\left|a_{i}\right\rangle$
$\left.\langle |\left|a_{1} b\right|||F(i)|| a_{1} a_{2}| |\right\rangle=\langle b| f\left|a_{2}\right\rangle$
* The electronic states that arise from the p^{2} electronic configuration are ${ }^{1} \mathrm{D},{ }^{3} \mathrm{P}$, and ${ }^{1} \mathrm{~S}$.
A. Construct the two Slater determinantal wavefunctions that correspond to $\mathrm{M}_{\mathrm{i}}=\mathrm{M}_{\mathrm{L}}+\mathrm{M}_{\mathrm{s}}=+2$.
[HINT: both $\left.\operatorname{ILSJM}_{\lrcorner}=2\right\rangle$ coupled states are single Slater determinants.]
$\left|{ }^{1} \mathrm{D}_{2} M_{J}=2\right\rangle=$
$\left|{ }^{3} \mathrm{P}_{2} M_{J}=2\right\rangle=$
B. Calculate the two diagonal and one off-diagonal matrix elements of $\mathbf{H}^{\mathrm{SO}}=\sum_{I} a\left(r_{i}\right) \ell_{i} \cdot s_{i}:$
(i) $\quad\left\langle{ }^{1} \mathrm{D}_{2} M_{J}=2\right| \zeta_{p}\left(\ell_{1 z} \mathbf{s}_{1 z}+\ell_{2 z} \mathbf{s}_{2 z}\right)\left|{ }^{1} \mathrm{D}_{2} M_{J}=2\right\rangle=$
(ii) $\quad\left\langle{ }^{3} \mathrm{P}_{2} M_{J}=2\right| \zeta_{p}\left(\ell_{1 z} \mathbf{s}_{1 z}+\ell_{2 z} \mathbf{s}_{2 z}\right)\left|{ }^{3} \mathrm{P}_{2} M_{J}=2\right\rangle=$
(iii) $\left\langle{ }^{3} \mathrm{P}_{2} M_{J}=2\right| \frac{1}{2} \zeta_{p}\left(\ell_{1-} \mathbf{s}_{1+}+\ell_{2-} \mathbf{s}_{2+}\right)\left|{ }^{1} \mathrm{D}_{2} M_{J}=2\right\rangle=$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

