JWKB QUANTIZATION CONDITION

Last time:

1.
$$V(x) = \alpha x$$
 $\phi(p) = N \exp\left[-\frac{i}{\hbar\alpha}(Ep - p^3/6m)\right]$
 $\psi(x) = Ai(z) * \text{zeroes of Ai, Ai' (and Bi, Bi')} * \text{tables of Ai (and Bi)} * \text{asymptotic forms far from turning points}$

2. Semi-Classical Approximation for $\Psi(x)$

* $p(x) = [(E - V(x))2m]^{1/2}$ modifies classical to make it wavefunction" (nodeless) * $\psi(x) = |p(x)|^{-1/2} \exp\left[\underbrace{\pm \frac{i}{\hbar} \int_{c}^{x} p(x')dx'}_{\text{wiggly-variable } kx}\right]$ modifies classical to make it QM wavefunction (oscillatory) $\pm \frac{i}{\hbar} \int_{c}^{x} p(x')dx'$ wiggly-variable kx) = work of the set of the s

* validity:
$$\frac{d\lambda}{dx} \ll 1$$
 valid when not too near a turning point.

[One reason for using semi-classical wavefunctions is that we often need to evaluate integrals of the type $\int \psi_i^* \hat{O} p \psi_j dx$. If $\hat{O} p$ is a slow function of x, the phase factor is $\exp \frac{i}{h} \Big[p_j(x') - p_i(x') \Big] dx'$. Take $\frac{d}{dx} \Big[= 0$ to find the stationary phase point $x_{s.p.}$.

 δx is range about $x_{s.p.}$ over which phase changes by $\pm \pi/2$. Integral is equal to $I(x_{s.p.})\delta x$.]

Logical Structure of pages 6-11 to 6-14 (not covered in lecture):

- 1. Ψ_{JWKB} is not valid (it blows up) near turning point \therefore we can't use ψ_{JWKB} to match Ψ 's on either side of turning point.
- 2. However, near a turning point, $x_{\pm}(E)$, every well-behaved V(x) looks like a linear poteintal

$$V(x) \approx V(x_{\pm}(E)) + \frac{dV}{dx}\Big|_{x=x_{\pm}} (x-x_{\pm})$$
 first term in a Taylor series.

This makes it possible to use Airy functions for any V(x) near turning point.

- 3. asymptotic-Airy functions have matched amplitudes (and phase) across the JWKB validity-gap that straddles the turning point.
- 4. Ψ_{JWKB} for a linear V(x) is identical to asymptotic-Airy!

It may be grubby, but it works! TODAY

- 1. Summary of regions of validity for Airy, a-Airy, *l*-JWKB, and JWKB on both sides of turning point. This seems complicated, but it leads to a result that will be exceptionally useful!
- 2. WKB quantization condition: energy levels without wavefunctions!
- 3. compute density of states dn_E/dE : (for box normalization can then convert to any other kind of normalization)
- 4. trivial solution of Harmonic Oscillator $E_v = \hbar \omega (v + 1/2) v = 0, 1, 2...$

Non-lecture (from pages 6-12 to 6-14)

classical
$$\psi_{a-AIRY} = \pi^{-1/12} \left(\frac{2m\alpha}{\hbar^2} \right)^{-1/12} (a-x)^{-1/4} \sin \left[\frac{2}{3} \left(\frac{2m\alpha}{\hbar^2} \right)^{1/2} (a-x)^{3/2} + \frac{\pi}{4} \right]$$

forbidden $\psi_{a-AIRY} = \frac{\pi}{2}^{-1/12} \left(\frac{2m\alpha}{\hbar^2} \right)^{-1/12} (x-a)^{-1/4} \exp \left[-\frac{2}{3} \left(\frac{2m\alpha}{\hbar^2} \right)^{1/2} (x-a)^{3/2} \right]$
classical $\psi_{\ell-JWKB} = C$ $(a-x)^{-1/4} \sin \left[\frac{2}{3} \left(\frac{2m\alpha}{\hbar^2} \right)^{1/2} (a-x)^{3/2} + \phi \right]$
forbidden $\psi_{\ell-JWKB} = D$ $(x-a)^{-1/4} \exp \left[-\frac{2}{3} \left(\frac{2m\alpha}{\hbar^2} \right)^{1/2} (x-a)^{3/2} \right]$

C, D, and ϕ are determined by matching.

These Airy functions are not normalized, but each pair has the correct relative amplitude on opposite sides of the turning point. ℓ -JWKB has same functional form as a-Airy. This permits us to link pairs of JWKB functions across invalid-JWKB region and then use JWKB to extend $\psi(x)$ into regions further from turning point where the linear approximation to V(x) is no longer valid (and no longer required).

Regions of Validity Near Turning Point $E = V(x_{\pm}(E))$

Common regions of validity for ψ_{a-AIRY} and ψ_{t-JWKB} — same functional form, specify amplitude and phase for $\psi_{JWKB}(x)$ valid far from turning point for exact V(x)!

7 - 4

Quantization of E in Arbitrary Shaped Wells

We already know how to splice across I, II and II, III regions, but how do we match Ψ 's in the entire a < x < b region? (Ψ propagated inward from x_(E) must join smoothly onto Ψ propagated inward from x₊(E).)

Region I
$$\Psi_{JWKB}^{I}(x) = \frac{C}{2} |p(x)|^{-1/2} e^{-\frac{1}{\hbar} \int_{x}^{a} |p(x')dx'|}$$
 (forbidden region)
(Ψ real, no oscillations)

Note carefully that the argument of $\exp\left[-\frac{1}{\hbar}\int_{x}^{a}|p(x')|dx'\right]$ goes to $-\infty$ as $x \to -\infty$, thus $\Psi_{I}(-\infty) \to 0$.

Note also that $|\Psi^{I}/C|$ increases monotonically as x increases up to x = a.

When you are doing matching for the first time, it is very important to verify that the phase of Ψ varies with x in the way you expect it to vary.

Region II
$$\psi_{JWKB}^{IIa}(x) = C|p(x)|^{-1/2} \sin\left[\frac{1}{\hbar}\int_{a}^{x} p(x')dx' + \frac{\pi}{4}\right]$$
 $a < x < b$

The *first* zero is located at an accumulated phase of $(3/4)\pi$ inside x = a because $(3/4 + 1/4)\pi = \pi$ and sin $\pi = 0$. Why is this the first zero?

It does not matter that is invalid near x = and x = b.

Note that phase increases as x increases – as it must. The $\pi/4$ is the extra phase required by the AIRY splice across I,II. It reflects the tunneling of $\Psi(x)$ into the forbidden region. This means the real state with tunneling lies at lower energy than one that satisfies the incorrect $\Psi(x_+) = 0$ boundary condition.

|PHASE| starts at π/4 in classical region and always increases as one moves (further into the classical region) away from the turning point. **NEVER FORGET THIS!**

Region III
$$\psi_{JWKB}^{III}(x) = \frac{C'}{2} |p(x)|^{-1/2} e^{-\frac{1}{\hbar} \int_{b}^{x} |p(x')| dx'} \quad x > b$$

Note that phase advances monotonically (i.e. the phase integral gets more positive) as $x \to \infty.$

 $:: |\Psi_{_{JWKB}}^{_{III}}| \text{ decreases monotonically to } 0 \text{ as } x \to +\infty.$

Region II again
$$\Psi_{JWKB}^{IIb}(x) = C' |p(x)|^{-1/2} \sin\left[\frac{1}{\hbar} \int_{x}^{b} p(x') dx' + \frac{\pi}{4}\right]$$

note: the argument of sine <u>starts at $\pi/4$ </u> and <u>increases</u> as one goes from x = b inward. In other words, opposite to $\Psi^{\Pi a}$, the argument decreases from left to right!

But it must be true that $\psi^{IIa}(x) = \psi^{IIb}(x)$ for all a < x < b !

There are 2 ways, C = C' and C = -C', to satisfy this requirement.

1.
$$\sin(\underbrace{\theta(x)}_{\substack{\text{argument} \\ \text{of }\psi^{IIa}}}) = \sin[\underbrace{(-\theta(x))}_{\substack{\text{argument} \\ \text{of }\psi^{IIb}}} + (2n+1)\pi] \text{ AND } C = C' \left[\psi^{\text{I}} \text{ and } \psi^{\text{II}} \text{ have the same sign.}\right]$$

$$[\sin\theta = -\sin(-\theta), \qquad [\sin(\theta + (2n+1))\pi] = -\sin\theta,$$

$$\therefore \sin\theta = \sin(-\theta + (2n+1)\pi)]$$

updated 8/13/20 8:21 AM

7 - 5

2. $\sin(\theta(x)) = -\sin[-\theta(x) + 2n\pi]$ if C = -C' [ψ^{I} and ψ^{II} have opposite signs]

now look at what the 2 cases require for the arguments

1. For
$$C = C'$$
 $\left[\frac{1}{\hbar}\int_{a}^{x} p \, dx + \frac{\pi}{4}\right] = -\left[\frac{1}{\hbar}\int_{x}^{b} p \, dx + \frac{\pi}{4}\right] + (2n+1)\pi$ $n = 0, 1, 2...$
 Ψ_{a}^{Π} Ψ_{b}^{Π}
 $\therefore \frac{1}{\hbar} \left(\int_{a}^{x} + \int_{x}^{b} p \, dx\right) = (2n+1)\pi - \frac{\pi}{4} - \frac{\pi}{4}$
 $\int_{a}^{b} p(x') \, dx' = \hbar \pi \left[2n + 1/2\right]$ Quantization: $\frac{1}{2}, \frac{5}{2}, \frac{9}{2}, ...$

2. For
$$C = -C'$$
 we get $\int_{a}^{b} p(x')dx' = \hbar\pi [2n - 1/2]$ Quantization: $\frac{3}{2}, \frac{7}{2}, \frac{11}{2}, \dots$
 $\hbar\pi = h/2$

combine the two: $\int_{a}^{b} p(x')dx' = h/2(n+1/2)$ n = 0, 1, 2, ... $C' = C(-1)^{n}$ result of this lecture. result of this lecture.

n is # of internal nodes because the argument always starts at $\pi/4$ and increases inward to $(n + 3/4)\pi$ at the other turning point.

inner t.p. outer t.p.
for
$$n = 0$$
 $\sin(\pi/r)$ $\rightarrow \sin(3\pi/4)$ NO INTERNAL NODE
 $n = 1$ $\sin(\pi/4)$ $\rightarrow \sin(7\pi/4)$ 1 internal node
etc.

Node count tells what level it is. $\int pdx$ at arbitrary E_{probe} tells how many levels there are at $E \leq E_{probe}$!

updated 8/13/20 8:21 AM

but p_E

$$\frac{\text{``Density of States''}}{dE} \frac{dn}{dE} \stackrel{\text{Always a crucial}}{\text{quantity}} \left[h \frac{dn}{dE} \text{ is the classical mechanical period of oscillation.} \right] \\ \frac{dn}{dE} = \frac{2}{h} \int_{x_{-}(E)}^{x_{+}(E)} p_{E}(x') dx' - \frac{1}{2} \\ \frac{dn}{dE} = \frac{2}{h} \left[p_{E}(x_{+}) \frac{dx_{+}}{dE} - p_{E}(x_{-}) \frac{dx_{-}}{dE} + \int_{x_{-}}^{x_{+}} \frac{dp_{E}}{dE} dx \right] \\ \text{but } p_{E}(x_{\pm}) \equiv 0 \\ \therefore \frac{dn}{dE} = \frac{2}{h} \int_{x_{-}}^{x_{+}} \frac{d}{dE} \left[2m(E - V(x')) \right]^{1/2} dx'$$
 (must take derivatives of the limits of integration as well as the integrand)

$$\frac{dn}{dE} = \frac{2}{h} \frac{1}{2} (2m) \int_{x_{-}}^{x_{+}} \left[2m \left(E - V(x') \right) \right]^{-1/2} dx' \quad \text{A very widely} \text{ useful quantity!}$$

you show that, for harmonic oscillator,

$$V(x) = \frac{1}{2}kx^{2}$$

$$\omega \equiv (k/m)^{1/2}$$

that $\frac{dn}{dE} = \frac{1}{\hbar\omega}$ independent of E, thus the oscillation period of the
Harmonic Oscillator is independent of E.

Can always use WKB quantization to compute density of box-normalized $\Psi_{\rm E}$'s, provided that ${\rm E} > V({\rm x})$ everywhere except at the 2 turning points.

7 - 7

Use WKB to solve a few "standard" problems. Since WKB is "semi-classical", we expect it to work in the $n \to \infty$ limit. There could be some errors for a few of the lowest- $n E_n$'s.

 $\mathbf{t} \equiv \left[\mathbf{a}^2 - \mathbf{x}^2\right]^{1/2}$ Non-lecture: Dwight Integral Table #350.01

$$\int t \, dx = \frac{xt}{2} + \frac{a^2}{2} \sin^{-1}(x \,/\, a)$$

here t = 0 at both x_+ and x_-

$$I = (2mk/2)^{1/2} \int_{-[2E_n/k]^{1/2}}^{[2E_n/k]^{1/2}} \left[2E_n/k - x^2 \right]^{1/2} dx$$
$$I = (2mk/2)^{1/2} \left(\frac{2E_n}{k} \right) \left[\underbrace{\sin^{-1} 1}_{\pi/2} - \underbrace{\sin^{-1} (-1)}_{-\pi/2} \right]$$
$$I = \left(\frac{m}{k} \right)^{1/2} E_n \left((\pi/2) - (-\pi/2) \right) = \pi \left(\frac{m}{k} \right)^{1/2} E_n$$

use the nonlecture result:

$$\hbar\pi(n+1/2) = \pi\left(\frac{m}{k}\right)^{1/2} E_n$$
$$E_n = \hbar\left(\frac{k}{m}\right)^{1/2} (n+1/2)$$

I suggest you apply WKB Quantization Condition to the following problems: See Shankar pages 454-457.

Vee V(x) = a|x| $E_n \propto (n+1/2)^{2/3}$ quartic $V(x) = bx^4$ $E_n \propto (n+1/2)^{4/3}$ $\ell = 0$, H atom $V(x) = cx^{-1}$ $E_n \propto n^{-2}$ harmonic $V(x) = \frac{1}{2}kx^2$ $E_n \propto (n+1/2)^1$

What does this tell you about the relationship between the exponents m and α in $V_m \propto x^m$ and $E_n \propto n^{\alpha}$?

Power of x in V(x)	Power of n in $E(n)$	
-1	-2	$\ell = 0$ H atom
1	2/3	Vee
2	1	Harmonic oscillator
4	4/3	Quartic oscillator

As power of x increases, power of n increases but slower.

Validity limits of WKB? surprisingly robust!

- * splicing of ψ^{IIa} , ψ^{IIb} ? $\frac{d^2V}{dx^2}$ can't be too large near the splice region * ψ_{JWKB} is bad when $\frac{d\lambda}{dx} \gtrsim 1$ (λ changes by more than itself for $\Delta x = \lambda$)
 - bad near turning points and near the minimum of V(x)
- * can't use WKB QC if there are more than 2 turning points

* bad near bottom of well
$$\frac{d^2 V}{dx^2}$$
 is not small and $\frac{d\lambda}{dx} > 1$

(near both turning points). However, most wells look harmonic near minimum and WKB gives exact result for harmonic oscillator - should be more OK near the minimum of V(x) than one has any right to expect.

* semi-classical: should be good in high-*n* limit. If exact E_n has same form as WKB QC at low-*n*, WKB E_n is valid for all *n*.

H.O., Morse Oscillator...

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.