JWKB QUANTIZATION CONDITION

$\underline{\text { Last time: }}$

$$
\text { 1. } \quad V(x)=\alpha x \quad \phi(p)=N \exp \left[-\frac{i}{\hbar \alpha}\left(E p-p^{3} / 6 m\right)\right]
$$

2. Semi-Classical Approximation for $\psi(x)$

* ψ without differential equation
* qualitative behavior of integrals (stationary phase)
* validity: $\frac{d \lambda}{d x} \ll 1 \quad$ valid when not too near a turning point.
[One reason for using semi-classical wavefunctions is that we often need to evaluate integrals of the type $\int \psi_{i}^{*} \hat{O} p \psi_{j} d x$. If $\hat{O} p$ is a slow function of x, the phase factor is
$\exp \frac{i}{\mathrm{~h}}\left[p_{j}\left(x^{\prime}\right)-p_{i}\left(x^{\prime}\right)\right] d x^{\prime}$. Take $\frac{d}{d x}[\quad]=0$ to find the stationary phase point $x_{s, p}$.
δx is range about $x_{s . p .}$ over which phase changes by $\pm \pi / 2$. Integral is equal to $\left.I\left(x_{s . p .}\right) \delta \mathrm{x}.\right]$
Logical Structure of pages 6-11 to 6-14 (not covered in lecture):

1. $\psi_{\text {JWKB }}$ is not valid (it blows up) near turning point - \therefore we can't use $\psi_{\text {JWKB }}$ to match ψ^{\prime} s on either side of turning point.
2. However, near a turning point, $x_{ \pm}(E)$, every well-behaved $V(x)$ looks like a linear poteintal

$$
V(x) \approx \mathrm{V}\left(\mathrm{x}_{ \pm}(E)\right)+\left.\frac{d V}{d x}\right|_{x=x_{ \pm}}\left(x-x_{ \pm}\right) \quad \text { first term in a Taylor series. }
$$

This makes it possible to use Airy functions for any $\mathrm{V}(\mathrm{x})$ near turning point.
3. asymptotic-Airy functions have matched amplitudes (and phase) across the JWKB validity-gap that straddles the turning point.
4. $\quad \psi_{\text {JWKB }}$ for a linear $\mathrm{V}(\mathrm{x})$ is identical to asymptotic-Airy!

It may be grubby, but it works!
TODAY

1. Summary of regions of validity for Airy, a-Airy, ℓ-JWKB, and JWKB on both sides of turning point. This seems complicated, but it leads to a result that will be exceptionally useful!
2. WKB quantization condition: energy levels without wavefunctions!
3. compute density of states $\mathrm{dn}_{\mathrm{E}} / \mathrm{dE}$: (for box normalization - can then convert to any other kind of normalization)
4. trivial solution of Harmonic Oscillator

$$
E_{v}=\hbar \omega(v+1 / 2) \quad v=0,1,2 \ldots
$$

Non-lecture (from pages 6-12 to 6-14)
classical
forbidden

$$
\psi_{\mathrm{a}-\mathrm{AIRY}}=\pi^{-1 / 12}\left(\frac{2 \mathrm{~m} \alpha}{\hbar^{2}}\right)^{-1 / 12}(\mathrm{a}-\mathrm{x})^{-1 / 4} \sin \left[\frac{2}{3}\left(\frac{2 \mathrm{~m} \alpha}{\hbar^{2}}\right)^{1 / 2}(a-\mathrm{x})^{3 / 2}+\frac{\pi}{4}\right]
$$

$$
\psi_{\mathrm{a}-\mathrm{AIRY}}=\frac{\pi}{2}^{-1 / 12}\left(\frac{2 \mathrm{~m} \alpha}{\hbar^{2}}\right)^{-1 / 12}(\mathrm{x}-\mathrm{a})^{-1 / 4} \exp \left[-\frac{2}{3}\left(\frac{2 \mathrm{~m} \alpha}{\hbar^{2}}\right)^{1 / 2}(\mathrm{x}-\mathrm{a})^{3 / 2}\right]
$$

classical

$$
\begin{array}{ll}
\psi_{\ell-\text { JWKB }}= & C \\
(a-x)^{-1 / 4} \sin \left[\frac{2}{3}\left(\frac{2 m \alpha}{\hbar^{2}}\right)^{1 / 2}(a-x)^{3 / 2}+\phi\right] \\
\psi_{\ell-\text { JWKB }}= & \text { D } \quad(x-a)^{-1 / 4} \exp \left[-\frac{2}{3}\left(\frac{2 m \alpha}{\hbar^{2}}\right)^{1 / 2}(x-a)^{3 / 2}\right]
\end{array}
$$

forbidden $\quad \psi_{\ell-\text { JWKB }}=$
C, D, and ϕ are determined by matching.

These Airy functions are not normalized, but each pair has the correct relative amplitude on opposite sides of the turning point. ℓ-JWKB has same functional form as a-Airy. This permits us to link pairs of JWKB functions across invalidJWKB region and then use JWKB to extend $\psi(x)$ into regions further from turning point where the linear approximation to $\mathrm{V}(\mathrm{x})$ is no longer valid (and no longer required).

Regions of Validity Near Turning Point $E=V(x \pm(E))$

Common regions of validity for $\psi_{\text {a-AIRY }}$ and $\psi_{\ell-J W K B}$ - same functional form, specify amplitude and phase for $\Psi_{\text {JwKB }}(x)$ valid far from turning point for exact $\mathrm{V}(\mathrm{x})$!

Quantization of E in Arbitrary Shaped Wells

We already know how to splice across I, II and II, III regions, but how do we match ψ 's in the entire $\mathrm{a}<\mathrm{x}<\mathrm{b}$ region? (ψ propagated inward from x _(E) must join smoothly onto ψ propagated inward from $x_{+}(E)$.)

$$
\text { Region I } \quad \psi_{J W K B}^{I}(x)=\frac{C}{2}|p(x)|^{-1 / 2} e^{-\frac{1}{\hbar} \int_{x}^{a}\left|p\left(x^{\prime}\right) d x^{\prime}\right|} \quad x<a \begin{aligned}
& \text { (forbidden region) } \\
& \begin{array}{l}
\text { (} \Psi \text { real, no oscill- } \\
\text { ations) }
\end{array}
\end{aligned}
$$

Note carefully that the argument of $\exp \left[-\frac{1}{\hbar} \int_{x}^{a}\left|p\left(x^{\prime}\right)\right| d x^{\prime}\right]$ goes to $-\infty$ as $\mathrm{x} \rightarrow-\infty$, thus $\psi_{\mathrm{I}}(-\infty) \rightarrow 0$.
Note also that $|\psi I / C|$ increases monotonically as x increases up to $x=a$.
When you are doing matching for the first time, it is very important to verify that the phase of ψ varies with x in the way you expect it to vary.

Region II

$$
\psi_{\mathrm{JWKB}}^{\mathrm{IIa}}(\mathrm{x})=\mathrm{C}|\mathrm{p}(\mathrm{x})|^{-1 / 2} \sin \left[\frac{1}{\hbar} \int_{\mathrm{a}}^{\mathrm{x}} \mathrm{p}\left(\mathrm{x}^{\prime}\right) \mathrm{dx}^{\prime}+\frac{\pi}{4}\right] \quad \mathrm{a}<\mathrm{x}<\mathrm{b}
$$

The first zero is located at an accumulated phase of (3/4) Π inside $\mathrm{x}=\mathrm{a}$ because $(3 / 4+1 / 4) \Pi=п$ and $\sin \Pi=0$. Why is this the first zero?

It does not matter that is invalid near $\mathrm{x}=$ and $\mathrm{x}=\mathrm{b}$.

Note that phase increases as x increases - as it must. The $\pi / 4$ is the extra phase required by the AIRY splice across I,II. It reflects the tunneling of $\Psi(x)$ into the forbidden region. This means the real state with tunneling lies at lower energy than one that satisfies the incorrect $\psi\left(x_{ \pm}\right)=0$ boundary condition.
\mid PHASE \mid starts at $n / 4$ in classical region and always increases as one moves (further into the classical region) away from the turning point.
NEVER FORGET THIS!
Region III

$$
\psi_{J W K B}^{I I I}(x)=\frac{C^{\prime}}{2}|p(x)|^{-1 / 2} e^{-\frac{1}{\hbar} \int_{b}^{x}\left|p\left(x^{\prime}\right)\right| d x^{\prime}} \quad x>b
$$

Note that phase advances monotonically (i.e. the phase integral gets more positive) as $\mathrm{x} \rightarrow \infty$.
$\therefore\left|\psi_{\text {JWKB }}^{\mathrm{II}}\right|$ decreases monotonically to 0 as $\mathrm{x} \rightarrow+\infty$.

Region II again

$$
\Psi_{J W K B}^{I I b}(x)=C^{\prime}|p(x)|^{-1 / 2} \sin \left[\frac{1}{\hbar} \int_{x}^{b} p\left(x^{\prime}\right) d x^{\prime}+\frac{\pi}{4}\right]
$$

note: the argument of sine starts at $\Pi / 4$ and increases as one goes from $\mathrm{x}=\mathrm{b}$ inward. In other words, opposite to $\psi{ }^{\text {IIa }}$, the argument decreases from left to right!

But it must be true that $\psi^{I I a}(x)=\psi^{I I b}(x)$ for all $\mathrm{a}<\mathrm{x}<\mathrm{b}$!

There are 2 ways, $\mathrm{C}=\mathrm{C}^{\prime}$ and $\mathrm{C}=-\mathrm{C}^{\prime}$,to satisfy this requirement.

1. $\sin (\underbrace{\theta(x)}_{\substack{\text { argument } \\ \text { of } \psi^{I / 2}}})=\sin [\underbrace{(-\theta(x))}_{\substack{\text { argument } \\ \text { of } \psi^{I I}}}+(2 n+1) \pi]$ AND $\mathrm{C}=\mathrm{C}^{\prime}\left[\psi^{\mathrm{I}}\right.$ and ψ^{II} have the same sign. $]$

$$
\begin{aligned}
& {[\sin \theta=-\sin (-\theta), \quad[\sin (\theta+(2 n+1)) \pi]=-\sin \theta} \\
& \therefore \sin \theta=\sin (-\theta+(2 n+1) \pi)]
\end{aligned}
$$

2. $\sin (\theta(x))=-\sin [-\theta(x)+2 n \pi] \quad$ if $C=-C^{\prime} \quad\left[\psi^{\prime}\right.$ and ψ^{H} have opposite signs] now look at what the 2 cases require for the arguments
3. For $C=C^{\prime} \quad\left[\frac{1}{\hbar} \int_{\mathrm{a}}^{x} p d x+\frac{\pi}{4}\right]=-\left[\frac{1}{\hbar} \int_{x}^{b} p d x+\frac{\pi}{4}\right]+(2 n+1) \pi \quad n=0,1,2 \ldots$

$$
\begin{gathered}
\psi_{a}^{I} \\
\therefore \frac{1}{\hbar}\left(\int_{a}^{x}+\int_{x}^{b} p d x\right)=(2 n+1) \pi-\frac{\pi}{4}-\frac{\pi}{4} \\
\int_{a}^{b} p\left(x^{\prime}\right) d x^{\prime}=\hbar \pi[2 n+1 / 2] \quad \text { Quantization: } \frac{1}{2}, \frac{5}{2}, \frac{9}{2} \ldots
\end{gathered}
$$

2. For $C=-C^{\prime}$ we get $\int_{a}^{b} p\left(x^{\prime}\right) d x^{\prime}=\hbar \pi[2 n-1 / 2]$ Quantization: $\frac{3}{2}, \frac{7}{2}, \frac{11}{2}, \ldots$

$$
\hbar \pi=h / 2
$$

combine the two:

n is \# of internal nodes because the argument always starts at $\pi / 4$ and increases inward to $(\mathrm{n}+3 / 4) \pi$ at the other turning point.
inner t.p. outer t.p.
for $\quad \mathrm{n}=0 \quad \sin (\pi / \mathrm{r}) \quad \rightarrow \sin (3 \pi / 4) \quad$ NO INTERNAL NODE
$\mathrm{n}=1 \quad \sin (\pi / 4) \quad \rightarrow \sin (7 \pi / 4) \quad 1$ internal node
etc.
Node count tells what level it is. \int pdx at arbitrary
$\mathrm{E}_{\text {probe }}$ tells how many levels there are at $\mathrm{E} \leq \mathrm{E}_{\text {probe }}$!
"Density of States" $\frac{d n}{d E}$ Always a crucial $[h \frac{d n}{d E}$ is the $\underbrace{\text { classical mechanical period }}_{\text {large } \frac{d n}{d E} \text {, slow oscillation }}$ of oscillation. $]$ $n(E)=\frac{2}{\mathrm{~h}} \int_{x_{-}(E)}^{x_{+}(E)} p_{E}\left(x^{\prime}\right) d x^{\prime}-\frac{1}{2}$
$\frac{d n}{d E}=\frac{2}{\mathrm{~h}}\left[p_{E}\left(x_{+}\right) \frac{d x_{+}}{d E}-p_{E}\left(x_{-}\right) \frac{d x_{-}}{d E}+\int_{x_{-}}^{x_{+}} \frac{d p_{E}}{d E} d x\right]$
but $p_{E}\left(x_{ \pm}\right) \equiv 0$
$\therefore \frac{d n}{d E}=\frac{2}{\mathrm{~h}} \int_{x_{-}}^{x_{+}} \frac{d}{d E}\left[2 m\left(E-V\left(x^{\prime}\right)\right)\right]^{1 / 2} d x^{\prime}$

$$
\frac{d n}{d E}=\frac{2}{h} \frac{1}{2}(2 m) \int_{x_{-}}^{x_{+}}\left[2 m\left(E-V\left(x^{\prime}\right)\right)\right]^{-1 / 2} d x^{\prime} \quad \begin{aligned}
& \text { A very widely } \\
& \text { useful quantity! }
\end{aligned}
$$

you show that, for harmonic oscillator,

$$
\begin{aligned}
V(x) & =\frac{1}{2} k x^{2} \\
\omega & \equiv(k / m)^{1 / 2}
\end{aligned}
$$ that $\frac{d n}{d E}=\frac{1}{\hbar \omega} \quad \begin{aligned} & \text { independent of } \mathrm{E} \text {, thus the oscillation period of the } \\ & \text { Harmonic Oscillator is independent of } \mathrm{E} \text {. }\end{aligned}$

Non-lecture

for general box normalization
can still use this to compute $\frac{\mathrm{dn}}{\mathrm{dE}}$ because

$$
\frac{\mathrm{dx}_{+}}{d E}=0\left(\text { even though } p_{E}\left(x_{+}\right) \neq 0\right) .
$$

Can always use WKB quantization to compute density of box-normalized $\psi_{\mathrm{E}}{ }^{\prime} \mathrm{s}$, provided that $\mathrm{E}>\mathrm{V}(\mathrm{x})$ everywhere except at the 2 turning points.

5.73 Lecture \#7

Use WKB to solve a few "standard" problems. Since WKB is "semi-classical", we expect it to work in the $n \rightarrow \infty$ limit. There could be some errors for a few of the lowest- $n \mathrm{E}_{n}$'s.

Harmonic Oscillator $\quad \mathrm{V}(\mathrm{x})=k x^{2} / 2 \quad$ (k is force constant, not wave vector)
$p(x)=\left[2 m\left(E-\frac{1}{2} k x^{2}\right)\right]^{1 / 2}$
At turning points, $V\left(x_{t p}\right)=E$ and $p\left(x_{t p}\right)=0$, thus, at turning points $x_{ \pm}= \pm\left[2 E_{n} / k\right]^{1 / 2}$
because $E_{n}=\frac{1}{2} k x_{ \pm}^{2}$

$\hbar \pi(n+1 / 2)=\int_{x_{-}=-\left[2 E_{n} / k\right]^{1 / 2}}^{x_{+}=\left[2 E_{n} / k\right]^{1 / 2}}\left[2 m\left(E_{n}-k x^{2} / 2\right)\right]^{1 / 2} d x$

Non-lecture: Dwight Integral Table \#350.01

$$
t \equiv\left[a^{2}-x^{2}\right]^{1 / 2}
$$

$$
\int t d x=\frac{x t}{2}+\frac{a^{2}}{2} \sin ^{-1}(x / a)
$$

here $t=0$ at both X_{+}and x_{-}

$$
\begin{aligned}
& I=(2 m k / 2)^{1 / 2} \int_{-\left[2 E_{n} / k\right]^{1 / 2}}^{\left[2 E_{n} / k\right]^{1 / 2}}\left[2 E_{n} / k-x^{2}\right]^{1 / 2} d x \\
& I=(2 m k / 2)^{1 / 2}\left(\frac{2 E_{n}}{k}\right)[\underbrace{\sin ^{-1} 1}_{\pi / 2}-\underbrace{\sin ^{-1}(-1)}_{-\pi / 2}] \\
& I=\left(\frac{m}{k}\right)^{1 / 2} E_{n}((\pi / 2)-(-\pi / 2))=\pi\left(\frac{m}{k}\right)^{1 / 2} E_{n}
\end{aligned}
$$

use the nonlecture result: $\quad \hbar \pi(n+1 / 2)=\pi\left(\frac{m}{k}\right)^{1 / 2} E_{n}$

$$
E_{n}=\underbrace{\hbar\left(\frac{k}{m}\right)^{1 / 2}}_{\omega}(n+1 / 2)
$$

I suggest you apply WKB Quantization Condition to the following problems: See Shankar pages 454-457.

$$
\begin{array}{lll}
\text { Vee } & V(x)=a|x| & E_{n} \propto(n+1 / 2)^{2 / 3} \\
\text { quartic } & V(x)=b x^{4} & E_{n} \propto(n+1 / 2)^{4 / 3} \\
\ell=0, \text { H atom } & V(x)=c x^{-1} & E_{n} \propto n^{-2} \\
\text { harmonic } & V(x)=\frac{1}{2} k x^{2} & E_{n} \propto(n+1 / 2)^{1}
\end{array}
$$

What does this tell you about the relationship between the exponents m and α in $\mathrm{V}_{\mathrm{m}} \propto \mathrm{x}^{\mathrm{m}}$ and $\mathrm{E}_{\mathrm{n}} \propto \mathrm{n}^{\alpha}$?

Power of x in $\mathrm{V}(x)$	Power of n in $E(n)$	
-1	-2	$\ell=0 \mathrm{H}$ atom
1	$2 / 3$	Vee
2	1	Harmonic oscillator
4	$4 / 3$	Quartic oscillator

As power of x increases, power of n increases but slower.
Validity limits of WKB? surprisingly robust!

* splicing of $\psi^{\text {IIa }}, \psi^{I I b} ? \frac{d^{2} V}{d x^{2}} \quad$ can't be too large near the splice region
* $\psi_{\text {JWKB }}$ is bad when $\frac{\mathrm{d} \lambda}{\mathrm{dx}} \gtrsim 1 \quad(\lambda$ changes by more than itself for $\Delta \mathrm{x}=\lambda$)
bad near turning points and near the minimum of $\mathrm{V}(\mathrm{x})$
* can' t use WKB QC if there are more than 2 turning points
* bad near bottom of well $\frac{d^{2} V}{d x^{2}}$ is not small and $\frac{\mathrm{d} \lambda}{\mathrm{dx}}>1$
(near both turning points). However, most wells look harmonic near minimum and WKB gives exact result for harmonic oscillator - should be more OK near the minimum of $\mathrm{V}(\mathrm{x})$ than one has any right to expect.
* semi-classical: should be good in high- n limit. If exact E_{n} has same form as WKB QC at low- n, WKB E_{n} is valid for all n.
H.O., Morse Oscillator...

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

