Zeeman Effect

Read CTDL, pp. 1156-1178, preparation for 1-D solids

LAST TIME:

- * computational tricks and inter-relationships among atomic and molecular constants
- * $\mathbf{H}^{SO} = \zeta(N,L,S)L \cdot S \rightarrow a$ different $\zeta(N,L,S)$ constant for each L–S state in configuration N

or, from $\mathbf{H}^{so} = \sum_{i} a(r_i) \boldsymbol{\ell}_i \mathbf{s}_i \rightarrow \text{one } \zeta_{n\ell}$ parameter valid for all diagonal and off-diagonal intra-configurational matrix elements

 ζ (N,L,S) a fit parameter $\zeta_{n_{\ell}}$ an orbital integral

micro→macro forms of operators

TODAY:

- 1. electrons \leftrightarrow holes shortcuts for e^2/r_{ij} and \mathbf{H}^{SO}
- 2. Hund's 3rd Rule: the lowest L–S–J level of an electronic configuration
- 3. Zeeman effect. Landé g-factor via Wigner-Eckart Theorem. Another way to evaluate reduced matrix elements.
- 4. **H**^{Zeeman} in Slater determinantal basis set.

1. electrons (e⁻) \leftrightarrow holes (h⁺) shortcuts

subshell		$n\ell^{ m N}$		
½ full	\mathbf{s}	р	d	\mathbf{f}
#e ⁻	1	3	5	7

for p^5 do we need to consider $5e^-$ or one h^+ ?

 p^{5} ²P $M_{L} = 1, M_{S} = 1/2$ $||1\alpha 1\beta 0\alpha 0\beta - 1\alpha||$ $(ph^{+})^{1}$ ²P $M_{L} = 1, M_{S} = 1/2$ $||1\alpha||$

Get same energy order of L-S states via 5e⁻ or 1h⁺ Slater determinant

Why? e^2/r_{ij} expresses $e^- - e^-$ repulsion $h^+ - h^+$ is also repulsion

so we get the same result for e^2/r_{ij} by e⁻ or h⁺ algebra. All F_k , G_k Slater-Condon parameters are > 0.

What about p^5d^1 vs. p^1d^1 ? Is the energy level order inverted? Hund's 1^{st} and 2^{nd} rules predict the same lowest state in p^5d as in $(ph^+)^1 d^1$.

What about e^-vs . h^+ for \mathbf{H}^{SO} ?

$$\mathbf{H}^{\mathrm{SO}} = \zeta(N, L, S) \mathbf{L} \cdot \mathbf{S} = \sum_{i} a(r_{i}) \ell_{i} \mathbf{s}_{i}$$

Take $\Delta M_J = 0$, $M_J = J = L + S$ matrix element of both sides of the \mathbf{H}^{SO} equation.

This is an extreme state from the M_L, M_S box diagram. There is only one Slater determinant in this box.

$$p^{5}{}^{2}P \text{ vs. } p^{1}{}^{2}P$$
$$\hbar^{2}\zeta(p^{5}{}^{2}P, M_{L} = 1, M_{s} = 1/2)\left(1 \cdot \frac{1}{2}\right) = \hbar^{2}\zeta_{np}\left[1 \cdot \frac{1}{2} + 1 \cdot \left(-\frac{1}{2}\right) + 0 + 0 + -1 \cdot \frac{1}{2}\right]$$
$$= \hbar^{2}\zeta_{np}(-1)\left(\frac{1}{2}\right)$$
$$\zeta(p^{5}{}^{2}P) = -\zeta$$

 $\zeta(p^{5/2}P) = -\zeta_{np}$

Now $p^{1/2}P$

$$\hbar^{2}\zeta\left(p^{1\,2}P, M_{L}=1, M_{s}=1/2\right)\underline{L}\cdot\underline{S} = \hbar^{2}\zeta_{np}\left[1\cdot\frac{1}{2}\right]$$
$$1\cdot\frac{1}{2}$$
$$\zeta\left(p^{1\,2}P\right) = \zeta$$

 $\zeta(p P) = \zeta_{np}$

So we get a sign reversal in $\zeta(N^2P)$ for p^5 vs. p^1 .

So $e^- \leftrightarrow h^+$ gives no change in e^2/r_{ij} expressed by an always positive F_k and G_k . However, get sign reversed in \mathbf{H}^{SO} for ζ (N,L,S) but not for $\zeta_{n_{\ell}}$.

Figure 6-2 from Tinkham (page 187) for L_{MAX} , S_{MAX} state of $3d^N 4s^2$ configuration

This figure is in the public domain.

Fig. 6-2. Spin-orbit parameters in $3d^x$ transition elements. The splitting parameters $\zeta(LS)$ are computed as indicated in Table 6-2 and averaged over the various splittings. The data used are for the $3d^x4s^2$ configurations of the neutral atoms. (From Charlotte E. Moore, "Atomic Energy Levels," Natl. Bur. Standards, Circ. 467, vols. I and II, 1949 and 1952. A very similar figure appears in Condon and Shortley.)

Note that $\zeta_{n\ell}$ is a one-e⁻ orbital integral and is expected to exhibit "periodic" variation. It increases with atomic number and this is expected for increasing Z^{eff}: $Z \rightarrow Z + 1, Z^{eff} \rightarrow Z^{eff} + 1 - 1/2$

See Burns' rule paper on shielding included here: *J. Chem. Phys.* **41**, 1521 (1964).

General result for
$$\zeta$$
 (N,L,S):

$$\zeta(N,L,S) = \pm \frac{1}{2S_{MAX}} \zeta_{n\ell}$$
+ for $n < 2\ell + 1$
- for $n > 2\ell + 1$
 $\zeta(N,L,S) = 0$ for $n = 2\ell + 1$

Burn's paper on Pages 5 and 6 has been removed due to copyright restrictions. See Burn, Gerald. "Atomic Shielding Parameters." *J. Chem. Phys.* **41** (1964): 1521–1522.

Isoelectronic species (5 valence electrons):

 $Z^{\rm eff}$ increases more slowly than Z

Hund's 3rd Rule

 $1^{\rm st}$ and $2^{\rm nd}$ Hund's rules (for most stable L-S term) specify $S_{\rm MAX}$ and then $L_{\rm MAX}$ among all of the L-S states of a configuration.

 $L_{\text{MAX}} M_{\text{L}_{\text{MAX}}} S_{\text{MAX}} M_{\text{S}_{\text{MAX}}} \text{ is a single Slater determinant. It is also equal to}$ $J = L_{\text{MAX}} + S_{\text{MAX}} M_{\text{J}_{\text{MAX}}} = L_{\text{MAX}} + S_{\text{MAX}}$ $\zeta \left(n\ell^{N}, L_{\text{MAX}}, S_{\text{MAX}} \right) L_{\text{MAX}}, S_{\text{MAX}} = \zeta_{n\ell} \sum_{i} m_{\ell_{i}} m_{s_{i}}$ $M_{L} \qquad M_{S} m_{\ell_{i}} m_{s_{i}}$ $\zeta \left(n\ell^{N}, L_{\text{MAX}}, S_{\text{MAX}} \right) = \zeta_{n\ell} \frac{\sum_{i} m_{\ell_{i}} m_{s_{i}}}{L_{\text{MAX}} S_{\text{MAX}}}$ Shell $< \frac{1}{2}$ full $N < 2\ell + 1$ All spins are α $S_{L} = N/2$

$$S_{\text{MAX}} = N / 2$$

 $M_{L_{\text{MAX}}} = \ell + (\ell - 1) + \dots (\ell - N + 1)$

Sum includes sum of one ℓ for each of N terms, each additive term decreased by 0, 1, ... N-1.

$$M_{L_{\text{MAX}}} = N(\ell - (N-1)/2)$$

Similarly for shell that is more than half-full.

$$S_{\text{MAX}} = \frac{1}{2} \{ (2\ell+1)\alpha \text{ spins} - [N - (2\ell+1)]\beta \text{ spins} \}$$

= $(2\ell+1) - N/2$
$$M_s = S_{\text{MAX}} = (2\ell+1) - N/2$$

$$\zeta \left(n\ell^N, L_{\text{MAX}}, S_{\text{MAX}} \right) = \zeta_{n\ell} \frac{\left[\frac{1}{2} \sum_{(\alpha)} m_{\ell_i} - \frac{1}{2} \sum_{(\beta)} m_{\ell_i} \right]}{L_{\text{MAX}} S_{\text{MAX}}}$$

$$= -\frac{\zeta_{n\ell}}{2S_{\text{MAX}}} = -\frac{\zeta_{n\ell}}{(2\ell+1) - N/2}$$

So we have

$$\begin{aligned} \zeta \Big(n\ell^{N}, L_{\text{MAX}}, S_{\text{MAX}} \Big) &= \frac{\zeta_{n\ell}}{2S_{\text{MAX}}} & N < 2\ell + 1 \\ S_{\text{MAX}} &= N/2 = \frac{1}{2} \ \# \text{ of } e^{-} & N = 2\ell + 1 \\ &= -\frac{\zeta_{n\ell}}{2S_{\text{MAX}}} & N > 2\ell + 1 \\ S_{\text{MAX}} &= \Big[(2\ell + 1) - N/2 \Big] = \frac{1}{2} \ (\# \text{ of } h^{+}) \end{aligned}$$

Shell half full

$$L_{\text{MAX}} = 0$$
$$S_{\text{MAX}} = N / 2 \quad \end{bmatrix}^{N+1} S_{N/2}$$

No fine structure. Only a single J-Level, J = N/2.

3. Zeeman Effect.

Provides additional information for assignment of an L-S-J state.

In the coupled representation, $|JM_JL_S\rangle$ matrix elements of $H^{\rm Zeeman}$ are awkward because it is necessary to transform from coupled to uncoupled $|LM_LSM_S\rangle$ basis set in order to evaluate matrix elements of $H^{\rm Zeeman}$.

This is a fast way to get a closed-form expression for matrix elements of $\mathbf{H}^{\text{Zeeman}}$ in the coupled basis set. It involves a clever way to evaluate reduced matrix elements using the Wigner-Eckart Theorem.

 \mathbf{H}^{SO} and e^{2}/r_{ij} are rigorously diagonal in J (WHY?) but $\mathbf{H}^{\text{Zeeman}}$ is not (WHY?). [Answers depend on how you classify an operator relative to \mathbf{J} .]

We have a battle between $[\mathbf{H}^{SO} \text{ and } e^2/r_{ij}]$, which is diagonal in J, thus it tries to *defend* the coupled representation against $\mathbf{H}^{\text{Zeeman}}$, which is non-diagonal in J and tries to *destroy* the coupled representation.

We are interested in the weak field limit where

$$\langle J' | \mathbf{H}^{\text{Zeeman}} | J \rangle \ll | E_{J'}^{(0)} - E_J^{(0)} |$$
 due to the operators \mathbf{H}^{SO} and e^2 / r_{ij}

Our special case, limited to $\Delta J = 0$ matrix elements, fails when ζ (NLS) is small and B_Z is large.

Wigner Eckart Theorem tells us $\langle JM'LS | \mathbf{L} | JMLS \rangle = \langle JLS | | \mathbf{L} | | JLS \rangle \langle JM'_JLS | \mathbf{J} | JM_JLS \rangle$

Similarly for **S**
$$\langle JM'LS|\mathbf{S}|JMLS \rangle = \langle JLS||\mathbf{S}||JLS \rangle \langle JM'LS|\mathbf{J}|JMLS \rangle$$

but
$$J = L + S$$

 $\langle |\mathbf{J}| \rangle = (\langle ||\mathbf{L}|| \rangle + \langle ||\mathbf{S}|| \rangle) \langle JM'LS |\mathbf{J}| JMLS \rangle$
 $\underbrace{(1-\alpha) \quad \alpha}_{=1}$

Thus $\langle |\mathbf{S}| \rangle = \alpha \langle |\mathbf{J}| \rangle$ or $\mathbf{S} = \alpha \mathbf{J}$! An operator replacement!

Now for the cleverness:

$$J = L + S$$

$$J - S = L$$

$$(J - S)^{2} = L^{2}$$

$$J^{2} + S^{2} - 2J \cdot S = L^{2}$$

$$J \cdot S = \frac{J^{2} + S^{2} - L^{2}}{2}$$

Matrix elements of J^2 , S^2 , and L^2 are explicitly evaluable in the coupled representation, $|JLSM_J\rangle$.

Thus:

$$\langle JM'LS | \mathbf{J} \cdot \mathbf{S} | JMLS \rangle = \delta_{M'M} \hbar^2 \left[\frac{J(J+1) + S(S+1) - L(L+1)}{2} \right]$$

but $\mathbf{J} \cdot \mathbf{S} = \alpha \mathbf{J}^2$
 $\langle JM'LS | \alpha \mathbf{J}^2 | JMLS \rangle = \delta_{m'm} [\hbar^2 \alpha J (J+1)]$

we can solve for α

$$\alpha J(J+1) = \frac{J(J+1) + S(S+1) - L(L+1)}{2}$$
$$\alpha = \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$

$$\langle JMLS | \mathbf{H}^{\text{Zeeman}} | JMLS \rangle = -\mu_0 B_z \hbar M_J \underbrace{(1+\alpha)}_{g_J}$$

Zeeman energy level tuning rate:

$$\frac{dE}{dB_z} = \frac{d}{dB_z} \left(-\mu_0 B_z M_J (1+\alpha) \right)$$
$$= -\mu_0 M_J g_J$$
$$g_J = -\frac{1}{\mu_0} \frac{1}{M_J} \frac{dE}{dB_z} \longleftarrow$$

Apply a magnetic field, each J level splits into $2J + 1 M_J$ components.

of components tells us J, g_J tells us something about L and S

tuning is linear in $\mathbf{B}_{\mathbf{z}}$

J $J_{MAX} = L + S$ L and S parallel (magnetic moments add) $J_{MIN} = |L - S|$ L and S anti-parallel (magnetic moments partially cancel)

e.g.

for $J = 3$	L = 0, S = 3	L = 1, S = 2	L = 2, S = 1	L = 3, S = 0
\mathbf{g}_{J}	2.000	1.667	1.333	1.000
or for $L = 3$, $S = 1$		J = 4	J = 3	J = 2
		1.250	1.0833	0.667
\mathbf{g}_{J}		parallel		anti-parallel

To determine J: apply B_Z field and count M_J components

light Z polarized, $\Delta M_J = 0$

J' set of equal $M'_{J}, M'_{J} - 1$ splittings J'' another set of equal $M''_{J}, M''_{J} - 1$ splittings $\left[g_{J'} \neq g_{J''}\right]$

(' for upper state, " for lower state)

Alternatively, light polarized X or Y (perpendicular to B_Z)

get $M' - M'' = \pm 1$

If you know the upper and lower state patterns, you can disentangle the spectrum and get $g_{J'}$ and $g_{J''}$.

Use a pulsed laser

Excite

Get quantum beats \rightarrow determine $g_{J'}$! For many M" components, get a set of Zeeman Quantum Beats for J' upper levels, but all upper level quantum beats are at the same frequency!

You can show that g_J is the same for e^- and h^+ .

You can use the hole Slater determinant representation to evaluate $\mathbf{H}^{\text{Zeeman}}$ for more than 1/2 filled shells.

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.