Zeeman Effect

Read CTDL, pp. 1156-1178, preparation for 1-D solids
LAST TIME:

* computational tricks and inter-relationships among atomic and molecular constants
* $\quad \mathbf{H}^{\text {SO }}=\zeta(\mathrm{N}, \mathrm{L}, \mathrm{S}) \mathrm{L} \cdot \mathrm{S} \rightarrow$ a different $\zeta(\mathrm{N}, \mathrm{L}, \mathrm{S})$ constant for each $\mathrm{L}-\mathrm{S}$ state in configuration N
or, from $\mathbf{H}^{\mathrm{so}}=\sum_{i} a\left(r_{i}\right) \ell_{i} \mathbf{s}_{i} \rightarrow$ one $\zeta_{n \ell}$ parameter valid for all diagonal and off-diagonal intra-configurational matrix elements
$\zeta(\mathrm{N}, \mathrm{L}, \mathrm{S})$ a fit parameter
$\zeta_{n \ell}$ an orbital integral
micro \rightarrow macro forms of operators

TODAY:

1. electrons \leftrightarrow holes shortcuts for $e^{2} / r_{i j}$ and $\mathbf{H}^{\text {SO }}$
2. Hund's $3^{\text {rd }}$ Rule: the lowest $\mathrm{L}-\mathrm{S}-\mathrm{J}$ level of an electronic configuration
3. Zeeman effect. Landé g-factor via Wigner-Eckart Theorem. Another way to evaluate reduced matrix elements.
4. $\quad \mathbf{H}^{\text {Zeeman }}$ in Slater determinantal basis set.
5. electrons (e^{-}) \leftrightarrow holes $\left(\mathrm{h}^{+}\right)$shortcuts subshell $n \ell^{\mathrm{N}}$

$1 / 2$ full	S	p	d	f
$\# \mathrm{e}^{-}$	1	3	5	7

for p^{5} do we need to consider $5 \mathrm{e}^{-}$or one h^{+}?
$\mathrm{p}^{5} \quad{ }^{2} \mathrm{P} \quad M_{\mathrm{L}}=1, M_{\mathrm{S}}=1 / 2 \quad\|1 \alpha 1 \beta 0 \alpha 0 \beta-1 \alpha\|$
$\left(\mathrm{ph}^{+}\right)^{12} \mathrm{P} \quad M_{\mathrm{L}}=1, M_{\mathrm{S}}=1 / 2 \quad\|1 \alpha\|$
Get same energy order of L-S states via $5 \mathrm{e}^{-}$or $1 \mathrm{~h}^{+}$Slater determinant

$$
\begin{array}{lll}
\text { Why? } \quad e^{2} / r_{i j} \text { expresses } & \mathrm{e}^{-}-\mathrm{e}^{-} & \text {repulsion } \\
& \mathrm{h}^{+}-\mathrm{h}^{+} & \text {is also repulsion }
\end{array}
$$

so we get the same result for $e^{2} / r_{i j}$ by e^{-}or h^{+}algebra. All $\mathrm{F}_{\mathrm{k}}, \mathrm{G}_{\mathrm{k}}$ SlaterCondon parameters are >0.

What about $\mathrm{p}^{5} \mathrm{~d}^{1}$ vs. $\mathrm{p}^{1} \mathrm{~d}^{1}$? Is the energy level order inverted? Hund's $1^{\text {st }}$ and $2^{\text {nd }}$ rules predict the same lowest state in $\mathrm{p}^{5} \mathrm{~d}$ as in $\left(\mathrm{ph}^{+}\right)^{1} \mathrm{~d}^{1}$.

What about e^{-}vs. h^{+}for \mathbf{H}^{SO} ?

$$
\mathbf{H}^{\mathrm{SO}}=\zeta(N, L, S) \mathbf{L} \cdot \mathbf{S}=\sum_{i} a\left(r_{i}\right) \ell_{i} \mathbf{s}_{i}
$$

Take $\Delta \mathrm{M}_{\mathrm{J}}=0, \mathrm{M}_{\mathrm{J}}=\mathrm{J}=\mathrm{L}+\mathrm{S}$ matrix element of both sides of the \mathbf{H}^{SO} equation.

This is an extreme state from the $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ box diagram. There is only one Slater determinant in this box.
$p^{5} P$ vs. $\quad p^{12} P$
$\hbar^{2} \zeta\left(p^{52} P, M_{L}=1, M_{s}=1 / 2\right)\left(1 \cdot \frac{1}{2}\right)=\hbar^{2} \zeta_{n p}\left[1 \cdot \frac{1}{2}+1 \cdot\left(-\frac{1}{2}\right)+0+0+-1 \cdot \frac{1}{2}\right]$

$$
=\hbar^{2} \zeta_{n p}(-1)\left(\frac{1}{2}\right)
$$

$\zeta\left(\mathrm{p}^{5}{ }^{2} \mathrm{P}\right)=-\zeta_{\text {np }}$

Now $p^{12} \mathrm{P}$

$$
\hbar^{2} \zeta\left(p^{12} P, M_{L}=1, M_{s}=1 / 2\right) \underset{1 \cdot \frac{1}{2}}{L \cdot S}=\hbar^{2} \zeta_{n p}\left[1 \cdot \frac{1}{2}\right]
$$

$$
\zeta\left(\mathrm{p}^{12} \mathrm{P}\right)=\zeta_{\mathrm{np}}
$$

So we get a sign reversal in $\zeta\left(\mathrm{N}^{2} \mathrm{P}\right)$ for p^{5} vs. p^{1}.
So $\mathrm{e}^{-} \leftrightarrow \mathrm{h}^{+}$gives no change in $\mathrm{e}^{2} / r_{i j}$ expressed by an always positive F_{k} and G_{k}. However, get sign reversed in $\mathbf{H}^{\text {SO }}$ for $\zeta(\mathrm{N}, \mathrm{L}, \mathrm{S})$ but not for $\zeta_{n c}$.

Figure 6-2 from Tinkham (page 187) for $\mathrm{L}_{\text {MAX }}, \mathrm{S}_{\text {MAX }}$ state of $3 \mathrm{~d}^{\mathrm{N}} 4 \mathrm{~s}^{2}$ configuration

This figure is in the public domain.

Fig. 6-2. Spin-orbit parameters in $3 d^{x}$ transition elements. The splittings parameters $\zeta(L S ')$ are computed as indicated in Table 6-2 and averaged over the various splittings. The data used are for the $3 d^{x} 4 s^{2}$ configurations of the neutral atoms. (From Charlotte E. Moore, "Atomic Energy Levels," Natl. Bur. Standards, Circ. 467, vols. I and II, 1949 and 1952. A very similar figure appears in Condon and Shortley.)

Note that $\zeta_{n t}$ is a one- e^{-}orbital integral and is expected to exhibit "periodic" variation. It increases with atomic number and this is expected for increasing Zeff:

$$
\mathrm{Z} \rightarrow \mathrm{Z}+1, \mathrm{Z}^{\text {eff }} \rightarrow \mathrm{Z}^{\text {eff }}+1-1 / 2
$$

See Burns' rule paper on shielding included here: J. Chem. Phys. 41, 1521 (1964).

General result for $\zeta(\mathrm{N}, \mathrm{L}, \mathrm{S})$:
$\zeta(N, L, S)= \pm \frac{1}{2 S_{\text {MAX }}} \zeta_{n \ell}$

+ for $n<2 \ell+1$
- for $n>2 \ell+1$
$\zeta(N, L, S)=0$ for $n=2 \ell+1$

Burn's paper on Pages 5 and 6 has been removed due to copyright restrictions. See Burn, Gerald. "Atomic Shielding Parameters." J. Chem. Phys. 41 (1964): 1521-1522.

Isoelectronic species (5 valence electrons):

$$
\text { [e.g. } O Z(2 p)=8, S Z(3 p)=16]
$$

Zeff increases more slowly than Z

Hund's $3^{\text {rd }}$ Rule
$1^{\text {st }}$ and $2^{\text {nd }}$ Hund's rules (for most stable L - S term) specify S_{MAX} and then L_{MAX} among all of the $L-S$ states of a configuration.
$L_{\text {MAX }} M_{\mathrm{L}_{\mathrm{MAX}}} S_{\mathrm{MAX}} M_{\mathrm{S}_{\mathrm{MAX}}}$ is a single Slater determinant. It is also equal to
$J=L_{\mathrm{MAX}}+S_{\mathrm{MAX}} M_{\mathrm{J}}^{\mathrm{MAX}} \quad=L_{\mathrm{MAX}}+S_{\mathrm{MAX}}$
$\zeta\left(n \ell^{N}, L_{\mathrm{MAX}}, S_{\mathrm{MAX}}\right) \underset{\uparrow}{L_{\mathrm{MAX}}}, \underset{\uparrow}{S_{\mathrm{MAX}}}=\zeta_{n \ell} \sum_{i} m_{\ell_{i}} m_{s_{i}}$
$\zeta\left(n \ell^{N}, L_{\mathrm{MAX}}, S_{\mathrm{MAX}}\right)=\zeta_{n \ell} \frac{\sum_{i} m_{\ell_{i}} m_{s_{i}}}{L_{\mathrm{MAX}} S_{\mathrm{MAX}}}$
Shell $<\frac{1}{2}$ full $\quad N<2 \ell+1$
All spins are α

$$
\begin{aligned}
& S_{\mathrm{MAX}}=N / 2 \\
& M_{L_{\operatorname{MAX}}}=\ell+(\ell-1)+\ldots(\ell-N+1)
\end{aligned}
$$

Sum includes sum of one ℓ for each of N terms, each additive term decreased by $0,1, \ldots N-1$.
$M_{L_{\operatorname{MAX}}}=N(\ell-(N-1) / 2)$

$$
\begin{aligned}
& \zeta\left(n \ell^{N}, L_{\mathrm{MAX}}, S_{\mathrm{MAX}}\right)=\zeta_{n \ell} \frac{m_{s}=\alpha \text { for all }}{\text { occupied spin-orbitals }} \\
& L_{\mathrm{MAX}}^{2} S_{\mathrm{MAX}}
\end{aligned} m_{\ell_{\ell_{\mathrm{L}}}=\mathrm{L}_{\mathrm{MAX}}}, ~=\zeta_{n \ell} \frac{\frac{1}{2} L_{\mathrm{MAX}}}{L_{\mathrm{MAX}}(N / 2)}=\zeta_{n \ell} / N=\zeta_{n \ell} / 2 S_{\mathrm{MAX}}
$$

Similarly for shell that is more than half-full.

$$
\begin{aligned}
& S_{\mathrm{MAX}}=\frac{1}{2}\{(2 \ell+1) \alpha \text { spins }-[N-(2 \ell+1)] \beta \text { spins }\} \\
& \\
& =(2 \ell+1)-N / 2 \\
& M_{s}=S_{\mathrm{MAX}}=(2 \ell+1)-N / 2
\end{aligned} \begin{aligned}
\zeta\left(n \ell^{N}, L_{\mathrm{MAX}}, S_{\mathrm{MAX}}\right) & =\zeta_{n \ell} \frac{\left[\frac{1}{2} \sum_{(\alpha)}^{m_{\ell_{i}}}-\frac{1}{2} \sum_{(\beta)}^{m_{\ell}} m_{\ell_{i}}\right]}{L_{\mathrm{MAX}} S_{\mathrm{MAX}}} \\
& =-\frac{\zeta_{n \ell}}{2 S_{\mathrm{MAX}}}=-\frac{\zeta_{n \ell}}{(2 \ell+1)-N / 2}
\end{aligned}
$$

So we have

$$
\begin{aligned}
\zeta\left(n \ell^{N}, L_{\mathrm{MAX}}, S_{\mathrm{MAX}}\right) & =\frac{\zeta_{\mathrm{M} \mathrm{\ell}}}{2 S_{\mathrm{MAX}}} & & N<2 \ell+1 \\
S_{\mathrm{MAX}}=N / 2 & =\frac{1}{2} \# \text { of } e^{-} & & N=2 \ell+1 \\
& =-\frac{\zeta_{n \ell}}{2 S_{\mathrm{MAX}}} & & N>2 \ell+1 \\
S_{\mathrm{MAX}}=[(2 \ell+1)-N / 2] & =\frac{1}{2}\left(\# \text { of } h^{+}\right) & &
\end{aligned}
$$

Shell half full

$$
\begin{gathered}
L_{\mathrm{MAX}}=0 \\
S_{\mathrm{MAX}}=N / 2
\end{gathered}{ }^{N+1} S_{N / 2}
$$

No fine structure. Only a single J -Level, $\mathrm{J}=\mathrm{N} / 2$.
3. Zeeman Effect.

Provides additional information for assignment of an L-S-J state.

$$
\begin{aligned}
\text { HZeeman } & =\left(\mu_{0} / \hbar\right)\left(L_{Z}+2 S_{Z}\right) B_{Z} \\
\downarrow & \downarrow \\
\begin{array}{l}
\text { Bohr Magneton } \\
1.399613 \mathrm{MHz} / \mathrm{Gauss} \\
1 \mathrm{~cm}^{-1}=29979 \mathrm{MHz}
\end{array} & \begin{array}{l}
\text { magnetic field } \\
\text { (entirely along } \mathrm{Z} \\
\text { laboratory axis) }
\end{array}
\end{aligned}
$$

In the coupled representation, $\left|\mathrm{JM}_{J} \mathrm{~L}_{\mathrm{S}}\right\rangle$ matrix elements of $\mathbf{H}^{\text {Zeeman }}$ are awkward because it is necessary to transform from coupled to uncoupled $\left|\mathrm{LM}_{\mathrm{L}} \mathrm{SM}_{\mathrm{S}}\right\rangle$ basis set in order to evaluate matrix elements of $\mathbf{H}^{\text {Zeeman }}$.

This is a fast way to get a closed-form expression for matrix elements of $\mathbf{H}^{\text {Zeeman }}$ in the coupled basis set. It involves a clever way to evaluate reduced matrix elements using the Wigner-Eckart Theorem.
\mathbf{H}^{SO} and $e^{2} / r_{i j}$ are rigorously diagonal in J (WHY?) but $\mathbf{H}^{\text {Zeeman }}$ is not (WHY?). [Answers depend on how you classify an operator relative to $\overrightarrow{\mathbf{J}}$.]

We have a battle between [\mathbf{H}^{SO} and $\left.e^{2} / r_{i j}\right]$, which is diagonal in J , thus it tries to defend the coupled representation against $\mathbf{H}^{\text {Zeeman }}$, which is non-diagonal in J and tries to destroy the coupled representation.
We are interested in the weak field limit where

$$
\left\langle J^{\prime}\right| \mathbf{H}^{\text {Zeeman }}|J\rangle \ll\left|E_{J^{\prime}}^{(0)}-E_{J}^{(0)}\right| \text { due to the operators } \mathbf{H}^{\mathrm{SO}} \text { and } e^{2} / r_{i j}
$$

Our special case, limited to $\Delta J=0$ matrix elements, fails when $\zeta($ NLS $)$ is small and B_{Z} is large.

Wigner Eckart Theorem tells us
$\left\langle J M^{\prime} L S\right| \mathbf{L}|J M L S\rangle=\langle J L S||\mathbf{L}||J L S\rangle\left\langle J M_{J}^{\prime} L S\right| \mathbf{J}\left|J M_{J} L S\right\rangle$
Similarly for \mathbf{S}
$\left\langle J M^{\prime} L S\right| \mathbf{S}|J M L S\rangle=\langle J L S||\mathbf{S}||J L S\rangle\left\langle J M^{\prime} L S\right| \mathbf{J}|J M L S\rangle$
but $J=L+S$
$\left.\langle | \mathbf{J}\left\rangle=(\langle ||\mathbf{L}|| \rangle+\langle ||\mathbf{S}|| \rangle)\left\langle J M^{\prime} L S\right| \mathbf{J}\right| J M L S\right\rangle$

$$
\underbrace{(1-\alpha) \quad \alpha}_{=1}
$$

Thus $\langle | \mathbf{S}\rangle=\alpha\langle | \mathbf{J}|\rangle$ or $\mathbf{S = \alpha \mathbf { J }}$! An operator replacement!
Now for the cleverness:
$\mathbf{J}=\mathbf{L}+\mathbf{S}$
$\mathbf{J}-\mathbf{S}=\mathbf{L}$
$(\mathbf{J}-\mathbf{S})^{2}=\mathbf{L}^{2}$
$\mathbf{J}^{2}+\mathbf{S}^{2}-2 \mathbf{J} \cdot \mathbf{S}=\mathbf{L}^{2}$
$\mathbf{J} \cdot \mathbf{S}=\frac{\mathbf{J}^{2}+\mathbf{S}^{2}-\mathbf{L}^{2}}{2}$
Matrix elements of $\mathbf{J}^{2}, \mathbf{S}^{2}$, and \mathbf{L}^{2} are explicitly evaluable in the coupled representation, $\left|\mathrm{JLSM}_{\mathrm{J}}\right\rangle$.

Thus:
$\left\langle J M^{\prime} L S\right| \mathbf{J} \cdot \mathbf{S}|J M L S\rangle=\delta_{M^{\prime} M} \hbar^{2}\left[\frac{J(J+1)+S(S+1)-L(L+1)}{2}\right]$
but $\mathbf{J} \cdot \mathbf{S}=\alpha \mathbf{J}^{2}$
$\left\langle J M^{\prime} L S\right| \alpha \omega^{2}|J M L S\rangle=\delta_{m^{\prime} m}\left[\hbar^{2} \alpha J(J+1)\right]$
we can solve for α

$$
\alpha J(J+1)=\frac{J(J+1)+S(S+1)-L(L+1)}{2}
$$

$$
\alpha=\frac{J(J+1)+S(S+1)-L(L+1)}{2 J(J+1)}
$$

$\mathbf{H}^{\text {Zeeman }}-\mu_{0} B_{z}\left(\underset{\substack{(1-\alpha) \mathbf{J}_{z} \\ \mathbf{L}_{z}}}{\mathbf{L}_{\alpha \mathbf{J}_{z}}^{\downarrow}}+\underset{z}{2 \mathbf{S}_{z}}\right)=-\mu_{0} B_{z}(1+\alpha) \mathbf{J}_{z}$

$$
\langle J M L S| \mathbf{H}^{\text {Leman }}|J M L S\rangle=-\mu_{0} B_{z} \hbar M_{J} \underbrace{(1+\alpha)}_{g_{J}}
$$

Zeeman energy level tuning rate:

$$
\begin{aligned}
\frac{d E}{d B_{z}} & =\frac{d}{d B_{z}}\left(-\mu_{0} B_{z} M_{J}(1+\alpha)\right) \\
& =-\mu_{0} M_{J} g_{J} \\
g_{J} & =-\frac{1}{\mu_{0}} \frac{1}{M_{J}} \frac{d E}{d B_{z}} \longleftarrow
\end{aligned}
$$

Apply a magnetic field, each J level splits into $2 \mathrm{~J}+1 \mathrm{M}_{\mathrm{J}}$ components.
\# of components tells us $\mathrm{J}, \mathrm{g}_{\mathrm{J}}$ tells us something about L and S

e.g.
for $\mathrm{J}=3$
g_{J}
$\mathrm{L}=0, \mathrm{~S}=3$ 2.000
$\mathrm{L}=1, \mathrm{~S}=2$
1.667
$\mathrm{J}=4$
1.250
parallel

$$
\begin{gathered}
\mathrm{L}=2, \mathrm{~S}=1 \\
1.333
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{L}=3, \mathrm{~S}=0 \\
1.000
\end{gathered}
$$

$$
\mathrm{J}=3
$$

$$
1.0833
$$

$$
\mathrm{J}=2
$$

$$
0.667
$$

anti-parallel

To determine J : apply B_{Z} field and count M_{J} components
light Z polarized, $\Delta \mathrm{M}_{\mathrm{J}}=0$
$\left.\begin{array}{ll}\mathrm{J}^{\prime} & \text { set of equal } M_{J}^{\prime}, M_{J}^{\prime}-1 \text { splittings } \\ \mathrm{J}^{\prime \prime} & \text { another set of equal } M_{J}^{\prime \prime}, M_{J}^{\prime \prime}-1 \text { splittings }\end{array}\right] g_{J^{\prime}} \neq g_{J^{\prime \prime}}$
(${ }^{\prime}$ for upper state, ${ }^{\prime \prime}$ for lower state)
Alternatively, light polarized X or Y (perpendicular to B_{Z})

$$
\text { get } M^{\prime}-M^{\prime \prime}= \pm 1
$$

If you know the upper and lower state patterns, you can disentangle the spectrum and get $g_{J^{\prime}}$ and $g_{J^{\prime \prime}}$.

Use a pulsed laser
Excite

Get quantum beats \rightarrow determine $g_{J}!$ For many M" components, get a set of Zeeman Quantum Beats for J' upper levels, but all upper level quantum beats are at the same frequency!
You can show that g_{J} is the same for e^{-}and h^{+}.
You can use the hole Slater determinant representation to evaluate $\mathbf{H}^{\text {Zeeman }}$ for more than $1 / 2$ filled shells.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

