One Dimensional Lattice: Weak-Coupling Limit

In Lectures 37 and 38 we considered the strong coupling limit, like tunneling in $\mathrm{H}_{2}{ }^{+}$. Now we will look at the periodic lattice as a perturbation on the free particle.

See Baym "Lectures on Quantum Mechanics" pages 237-241.
Each atom in a lattice is represented by a 1-D $\mathrm{V}(\mathrm{x})$ that could bind an unspecified number of electronic states:

Now consider a lattice that could consist of two or more different types of atoms.
Periodic structure: repeated for each "unit cell", of length ℓ.
Consider a finite lattice (N atoms), but impose a periodic (head-to-tail) boundary condition.
$\mathrm{L}=\mathrm{N} \ell$
For each unit cell:

This is an infinitely repeated finite interval: Fourier Series

$$
V(x)=\sum_{n=\infty}^{\infty} e^{e^{k \times x} V_{n}}
$$

$$
K=\frac{2 \pi}{\ell} \quad \text { "reciprocal lattice vector" }
$$

V_{n} is the (possibly complex) Fourier coefficient of the part of $V(x)$ that looks like a free particle state with wave-vector $K n$ (momentum $\hbar K n$). Note that $K n$ is larger than the largest k (shortest λ) free-particle state that can be supported by a lattice of spacing ℓ.

$$
\begin{array}{r}
K n=n \frac{2 \pi}{\ell} \quad, \quad \text { first Brillouin Zone for } k: \\
-\frac{\pi}{\ell} \leq k \leq \frac{\pi}{\ell}
\end{array}
$$

We will see that the lattice is able to exchange momentum in quanta of $\hbar n K$ with the free particle. In $3-\mathrm{D}, \vec{K}$ is a vector.

To solve for the effect of $V(x)$ on a free-particle, we use perturbation theory. The free particle basis states are weakly perturbed by the periodic lattice.

1. Define the basis set.

$$
\left.\begin{array}{l}
\mathbf{H}^{(0)}=\frac{\mathbf{p}^{2}}{2 m}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V^{(0)} \\
V^{(0)}=\text { constant } \\
\Psi_{k}^{(0)}=L^{-1 / 2} e^{i k x} \\
E_{k}^{(0)}=\frac{\hbar^{2} k^{2}}{2 m}+V \stackrel{(0)}{\longleftrightarrow} \text { ignore }
\end{array}\right\}
$$

$$
\text { 2. } \mathbf{H}^{(1)}=\sum_{n=-\infty}^{\infty} e^{i K n} V_{n}
$$

$$
\text { Matrix elements: } H_{k^{\prime} k}^{(1)}=\int_{0}^{L} d x[\overbrace{L^{-1 / 2} e^{-i k^{\prime} x}}]\left[\sum_{n} e^{i K n x} V_{n}\right]\left[L^{-1 / 2} e^{i k x}\right]
$$

$$
H_{k^{\prime} k}^{(1)}=\frac{1}{L} \int_{0}^{L} d x \sum_{n} e^{i x\left(k+K n-k^{\prime}\right)} V_{n}
$$

$$
\text { integral }=0 \text { if } k+K n-k^{\prime} \neq 0
$$

$$
\therefore k^{\prime}=k+K n \text { selection rule }
$$

$$
H_{k^{\prime} k}^{(1)}=\frac{1}{L} L \sum_{n} V_{n} \delta_{k^{\prime}, k+K n}=\sum_{n} V_{n} \delta_{k^{\prime}, k+K n}
$$

Must be careful about $H_{k k^{\prime}}^{(1)}\left(\right.$ relative to $\left.H_{k^{k} k}^{(1)}\right)$. Return to definition.

$$
H_{k k^{\prime}}^{(1)}=\frac{1}{L} \int_{0}^{L} d x \sum_{n} e^{i x\left(-k+K n+k^{\prime}\right)} V_{n}=\sum_{n} V_{n} \delta_{k^{\prime}, k-K n}
$$

but Hermitian \mathbf{H} requires $H_{k k^{\prime}}^{(1)}=H_{k^{\prime} k}^{(1)^{*}}$

$$
\begin{gathered}
\therefore \sum_{n} V_{n} \delta_{k^{\prime}, k-K n}=\sum_{n} V_{n}^{*} \delta_{k^{\prime}, k+K n} \\
\text { true if } V_{n}=V_{-n}^{*} .
\end{gathered}
$$

So now that we have the matrix elements of $\mathbf{H}^{(0)}$ and $\mathbf{H}^{(1)}$, the problem is essentially solved. All that remains is to plug into perturbation theory and arrange the results.
3. Solve for $\psi_{k}=\psi_{k}^{(0)}+\psi_{k}^{(1)}$

$$
\begin{aligned}
& \psi_{k}^{(0)}=L^{-1 / 2} e^{i k x} \\
& \psi_{k}^{(1)}=L^{-1 / 2} \sum_{n}^{\prime} \frac{H_{k k^{\prime}}^{(1)} e^{i k^{\prime} x}}{E_{k}^{(0)}-E_{k^{\prime}}^{(0)}}=L^{-1 / 2} \sum_{n}^{\prime} \frac{V_{n} \delta_{k^{\prime}, k-K n}}{e^{i k^{\prime} x}}\left(\Sigma^{\prime} \text { means } k^{\prime} \neq k\right) \\
& \Psi_{k}^{(1)}=L^{-1 / 2} \sum_{n}^{\prime} \frac{V_{n} e^{i(k-K n) x}}{E_{k}^{(0)}-E_{k-K n}^{(0)}} \underbrace{k^{\prime}=k-K n}_{\begin{array}{l}
\text { imposing Kronecker } \delta \text {-fn } \\
\text { restriction on } e^{i k^{\prime} x}
\end{array}}
\end{aligned}
$$

Now be careful to express $\psi_{k}^{(1) *}$ correctly.

$$
\begin{aligned}
& \psi_{k}^{(1)^{*}}=L^{-1 / 2} \sum_{n}^{\prime} \frac{V_{n}^{*} e^{-i(k-K n) x}}{E_{k}^{(0)}-E_{k-K n}^{(0)}} \\
& \Psi_{k}^{(1)^{*}}=L^{-1 / 2} \sum_{n}^{\prime} \frac{V_{n}^{*}=V_{-n}}{E_{k}^{(0)}-e_{k-K n}^{(0)}}=L^{-1 / 2} \sum_{-n}^{\prime} \frac{V_{n} e^{-i(k-K n) x}}{E_{k}^{(0)}-E_{k+K n}^{(0)}} \\
& \text { eeplace n by }-\mathrm{n}
\end{aligned}
$$

But n is just a dummy index and sum is $-\infty$ to ∞, so we can replace $-n$ by n.
4. Use ψ_{k} and ψ_{k}^{*} to compute $\mathrm{E}_{\mathrm{k}}=\mathrm{E}_{\mathrm{k}}^{(0)}+\mathrm{E}_{\mathrm{k}}^{(1)}+\mathrm{E}_{\mathrm{k}}^{(2)}$.

Rather than use the usual formula for $\mathrm{E}^{(2)}$, go back to the λ^{n} formulation of perturbation theory.

$$
E_{k}=\lambda^{0} E_{k}^{(0)}+\lambda^{1} E_{k}^{(1)}+\lambda^{2} E_{k}^{(2)}=\left\langle\psi_{k}\right| \lambda^{0} \mathbf{H}^{(0)}+\lambda^{1} \mathbf{H}^{(1)}\left|\psi_{k}\right\rangle
$$

Retain terms only through λ^{2}

$$
\begin{aligned}
& \times[e^{i k x}+\lambda \underbrace{\sum_{n^{\prime}}^{\prime} \frac{V_{n^{\prime}} e^{i\left(k-K n^{\prime}\right) x}}{E_{k}^{(0)}-E_{k-K n^{\prime}}^{(0)}}}_{\psi_{k}^{(0)}}] \\
& E_{k}^{(0)}=\lambda^{0} \frac{1}{L}\left[-\frac{\hbar^{2}}{2 m}\left(-k^{2}\right) L\right]=\lambda^{0} \frac{\hbar^{2} k^{2}}{2 m} \quad\left[\text { recall } \frac{d^{2}}{d x^{2}} e^{i k x}=-k^{2} e^{i k x}\right] \\
& E_{k}^{(1)}=\lambda^{1} \frac{1}{L}\left[\int d x e^{-i k x} \sum_{m} e^{i K m x} V_{m} e^{i k x}+2 \text { terms involving }\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}\right)\right] \text {, } \\
& \text { and also retain one of the } \Sigma^{\prime} \text { sums (that excludes } n=0 \text {) }
\end{aligned}
$$

We will get to the λ^{2} equation on the next page.
For $E_{k}^{(1)}$: for 1 st term, only the $m=0$ term in the sum gives a nonzero
integral. For $2^{\text {nd }}$ terms, need an n or $n^{\prime}=0$ term from the sum, but these are excluded by the Σ^{\prime} sums.

$$
E_{k}^{(1)}=\lambda^{1} \frac{1}{L} L V_{0}=\lambda^{1} V_{0}
$$

This is basically telling us the location of the bottom of the band relative to "vacuum".

Three ways to get λ^{2} terms, two ways involve the $\mathbf{H}^{(1)}$ term, and one involves the $\mathbf{H}^{(0)}$ term. The $\mathbf{H}^{(0)}$ term requires $n=-n^{\prime}$..

$$
\begin{aligned}
E_{k}^{(2)}= & \frac{1}{L} \lambda^{2}\left[\int d x e^{-i k x} \sum_{m=-\infty}^{\infty} V_{m} e^{i K m x} \sum_{n^{\prime}=-\infty}^{\infty} \frac{V_{n^{\prime}} e^{i\left(k-K n^{\prime}\right) x}}{E_{k}^{(0)}-E_{k-K n^{\prime}}^{(0)}}\right. \\
& \left.+\int d x \sum_{n \neq 0}^{\prime} \frac{V_{n} e^{-i(k+K n) x}}{E_{k}^{(0)}-E_{k+K n}^{(0)}}\left(\sum_{m} V_{m} e^{i K m}\right) e^{i k x}\right]
\end{aligned}
$$

$\begin{array}{ll} & \sqrt{\text { n }} \text { needed to make integral non-zero } \\ \text { 1st term } & \stackrel{0}{0}=-k+K m+k-K n^{\prime}, \text { requires } \mathrm{m}=\mathrm{n}^{\prime}\end{array}$
2nd term $0=-k-K n+K m+k$, requires $\mathrm{m}=\mathrm{n}$

$$
E_{k}^{(2)}=\frac{1}{L} \lambda^{2}\left[\int d x \Sigma_{m}^{\prime} \frac{V_{m}^{2}}{E_{k}^{(0)}-E_{k-K m}^{(0)}}+\int d x \sum_{m}^{\prime} \frac{V_{m}^{2}}{E_{k}^{(0)}-E_{k+K m}^{(0)}}\right]
$$

These are both the same sum, the $\int d x$ integral gives L. Now we simplify this.

$$
E_{k}^{(2)}=2 \lambda^{2} \sum_{n=-\infty}^{\infty} \frac{V_{n}^{2}}{E_{k}^{(0)}-E_{k+K n}^{(0)}}
$$

Combine terms for n and $-n$ and sum $\sum_{n=1}^{\infty}$
Solve for the energy denominator terms

$$
E_{k}^{(0)}-E_{k \pm K n}^{(0)}=\frac{\hbar^{2}}{2 m}\left[k^{2}-(k \pm K n)^{2}\right]=-\frac{\hbar^{2} K n}{2 m}[K n \pm 2 k]
$$

Combine the energy denominators

$$
\frac{1}{E_{k}^{(0)}-E_{k+K n}^{(0)}}+\frac{1}{E_{k}^{(0)}-E_{k-K n}^{(0)}}=\frac{4 m}{\hbar^{2}} \frac{1}{K^{2} n^{2}-4 k^{2}}
$$

Assemble $E_{k}^{(2)}$

$$
E_{k}^{(2)}=\frac{-8 m}{\hbar^{2}} \sum_{n=1}^{\infty} \frac{V_{n}^{2}}{K^{2} n^{2}-4 k^{2}} .
$$

But there are many zeroes in this denominator as n goes from $1 \rightarrow \infty$.
Must use degenerate perturbation theory for each small denominator.

Recall, for the 2-level problem

$$
\left(\begin{array}{cc}
E_{k} & V \\
V & E_{k^{\prime}}
\end{array}\right) \longrightarrow E_{ \pm}=\frac{E_{k}+E_{k^{\prime}}}{2} \pm\left[\left(\frac{E_{k}-E_{k^{\prime}}}{2}\right)^{2}+V^{2}\right]^{1 / 2}
$$

$$
E_{k}=\frac{\hbar^{2} k^{2}}{2 m}+V_{0}-\frac{8 m}{\hbar^{2}} \sum_{n=1}^{\infty} \frac{V_{n}^{2}}{K^{2} n^{2}-4 k^{2}} \quad \begin{aligned}
& \text { Must be negative near } k=0 \\
& \text { because the lowest states are } \\
& \text { always pushed to lower } \\
& \text { energy. }
\end{aligned}
$$

zeroes at $k= \pm \frac{K n}{2}= \pm \frac{2 \pi}{2 \ell} n= \pm \frac{n \pi}{\ell}$, except $n=0$.
At $k=0$, there are no nearby zeroes

$$
\begin{aligned}
& \left.\frac{d E_{k}}{d k}\right|_{k=0}=\frac{\hbar^{2} k}{m} \quad(\text { minimum at } k=0) \\
& \left.\frac{d^{2} E_{k}}{d k^{2}}\right|_{k=0}=\frac{\hbar^{2}}{m} \quad \text { (positive curvature) } \\
& \text { just like free particle! }
\end{aligned}
$$

At $k= \pm \frac{K}{2}$, there are zeroes in the denominator, so there are gaps in the energy:
$2\left|\mathrm{~V}_{1}\right|$ at $k= \pm \frac{K}{2}$
$2\left|\mathrm{~V}_{2}\right|$ at $k= \pm K$
$2\left|\mathrm{~V}_{\mathrm{n}}\right|$ at $k= \pm \frac{n K}{2}$

What does this look like?

look at text Baym "Lectures on Quantum Mechanics," Benjamin (1981), page 240.
$k=\frac{\pi}{\ell}$ for the lowest energy segment of the $E_{k}(k)$ curve.
We know that all ψ 's have been generated within $-\frac{\pi}{2 \ell} \leq k \leq \frac{\pi}{2 \ell}$, but there are some different values of E for the same k at each discontinuity.

But we want to shift each of the segments by an integer times K to the left or right so that each shift within the $-\frac{K}{2} \leq k \leq \frac{K}{2}$ "First Brilouin Zone".

E vs. k diagram. Curvature gives $m_{\text {eff }}$.
3-D diagram - gives much more information. Tells us where to find transitions allowed as a function of 3-D \vec{k} vector in "reciprocal lattice" of lattice vector \vec{K}.

Scattering of free particle off lattice. Conservation of momentum in the sense $\vec{k}_{\text {final }}-\vec{k}_{\text {initial }}=\vec{K}$.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

