1.

5.73 Quiz 3

$$\hat{H}\psi_{n} = E \psi$$

$$\hat{H}\Psi = i\hbar \frac{\partial \Psi}{\partial t}$$

$$\Psi (,) = \psi^{-/\hbar} \text{ where } \psi_{n} \text{ is an eigenstate of } \hat{H}$$

$$\Psi(x,t) = \sum_{n} \psi^{-/\hbar} \text{ superposition of eigenstates of } \hat{H}$$

$$\int_{-\infty}^{\infty} \psi^{*}\psi = 0 \text{ if } \neq$$

$$= 1 \text{ if } n = m$$

A. What, if any, is the time dependence of $|\Psi_n(x,t)|^2$?

- B. Let $\Psi(x,t) = 2^{-1/2} \left[\psi_1 e^{-iE_1 t/\hbar} + \psi_2 e^{-iE_2 t/\hbar} \right] = 2^{-1/2} e^{-iE_1 t/\hbar} \left[\psi_1 + \psi_2 e^{+i\omega_{12} t} \right]$ and $= \omega_{12} \equiv (E_1 - E_2) / \hbar$. Assume that ψ_1 and ψ_2 are real, not complex. Solve for $\left| \Psi_n(x,t) \right|^2$.
- 2. Let $\psi(x) = e^{-ikx}$, $E_{|k|} = \frac{\hbar^2 k^2}{2m} + V_0$, and $\psi(x,t) = e^{i(-kx E_{|k|}t/\hbar)}$. Think of $\Psi(x,t)$ as a rigid object, $\Psi(x,0)$, moving along the x-axis at a constant velocity. This is the phase velocity, v_{ϕ} . The motion of the constant phase point is described by

$$\mathbf{x}_{\phi}(t) = \mathbf{x}_{\phi}(0) + \mathbf{v}_{\phi}t.$$

Solve for v_{ϕ} .

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.