5.73

Quiz 3

1.

$$
\begin{aligned}
& \hat{\mathrm{H}} \psi_{\mathrm{n}}=\mathrm{E} \psi \\
& \hat{\mathrm{H}} \Psi=\mathrm{i} \hbar \frac{\partial \Psi}{\partial \mathrm{t}}
\end{aligned}
$$

$\Psi()=,\psi-\quad / \hbar \quad$ where ψ_{n} is an eigenstate of \hat{H}
$\Psi(\mathrm{x}, \mathrm{t})=\sum_{\mathrm{n}} \quad \psi^{-}{ }^{/ \hbar}$ superposition of eigenstates of $\hat{\mathrm{H}}$
$\int_{-\infty}^{\infty} \psi^{*} \psi \quad=0$ if \neq
$=1$ if $n=m$
A. What, if any, is the time dependence of $\left|\Psi_{n}(x, t)\right|^{2}$?
B. Let $\Psi(\mathrm{x}, \mathrm{t})=2^{-1 / 2}\left[\psi_{1} \mathrm{e}^{-\mathrm{i} \mathrm{E}_{1} \mathrm{t} / \hbar}+\psi_{2} \mathrm{e}^{-\mathrm{iE} \mathrm{E}_{2} / \hbar}\right]=2^{-1 / 2} \mathrm{e}^{-\mathrm{iE}} \mathrm{E}_{1} / \hbar\left[\psi_{1}+\psi_{2} \mathrm{e}^{+\mathrm{i} \omega_{12} \mathrm{t}}\right]$ and $=\omega_{12} \equiv\left(E_{1}-E_{2}\right) / \hbar$. Assume that ψ_{1} and ψ_{2} are real, not complex. Solve for $\left|\Psi_{n}(x, t)\right|^{2}$.
2. Let $\psi(\mathrm{x})=\mathrm{e}^{-\mathrm{ikx}}, E_{|k|}=\frac{\hbar^{2} k^{2}}{2 m}+V_{0}$, and $\psi(x, t)=\mathrm{e}^{i\left(-k x-E_{|k|} t / \hbar\right)}$. Think of $\Psi(\mathrm{x}, \mathrm{t})$ as a rigid object, $\Psi(\mathrm{x}, 0)$, moving along the x -axis at a constant velocity. This is the phase velocity, v_{ϕ}. The motion of the constant phase point is described by

$$
x_{\phi}(t)=x_{\phi}(0)+v_{\phi} t .
$$

Solve for v_{ϕ}.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

