Infinite 1-D Lattice I

CTDL, pages 1156-1168

LAST TIME:

hole $\left(\hbar^{+}\right)$vs. e- configurations
$\ell^{\mathrm{N}} \leftrightarrow \ell^{2(2 \ell+1)-\mathrm{N}}\left[\right.$ e.g. $\left.\mathrm{f}^{13} \leftrightarrow \mathrm{f}^{1}\right]$ for $\mathrm{N}>2 \ell+1$ $\mathrm{e}^{2} / r_{i j}$ unchanged
$\zeta(\mathrm{NLS}) \leftrightarrow-\zeta(\mathrm{NLS}) \quad\left[\zeta_{n_{\ell}}\right.$ unchanged]
Hund's 3rd Rule (Lowest L-S term of ℓ^{N} only)

$$
\mathrm{N}<2 \ell+1 \quad \mathrm{E}_{\mathrm{MIN}} \text { for } J=|L-S| \quad \text { regular }
$$

$\mathrm{N}=2 \ell+1 \quad{ }^{(2 \ell+1)+1} S_{J=\frac{2 \ell+1}{2}} \quad S$ state: no fine structure
$\mathrm{N}>2 \ell+1 \quad \mathrm{E}_{\mathrm{MIN}}$ for $J=L+S \quad$ inverted
Zeeman Effect
Wigner-Eckart Theorem used to define g_{J}

$$
\begin{aligned}
& \mathrm{E}^{\text {Zeeman }}=-\mu_{0} \mathrm{M}_{J} \mathrm{~g}_{J} \mathrm{~B}_{\mathrm{Z}} \\
& g_{J}=1+\frac{J(J+1)+S(S+1)-L(L+1)}{2 J(J+1)}
\end{aligned}
$$

Confirm by $\mathbf{H}^{\text {Zeeman }}$ in Slater determinantal basis

TODAY:

1. $\quad \mathrm{H}_{2}$ as example of localization, delocalization, tunneling
2. ∞ dimension secular equation for simplified 1-D lattice
3. eigenvectors by equal probability trick
4. restrict k to $|k|<\pi / \ell: 1^{\text {st }}$ Brillouin Zone
5. $\quad E(k)=E_{0}-2 A \cos k \ell$ (are these all of the allowed states?)
6. Bloch functions $\psi_{k}(x)=e^{i k x} \mu_{k}(x)$
next
lecture $\left[\begin{array}{ll}7 . & \text { wavepackets, motion, group velocity } \\ 8 . & \text { transitions: energy bands and intensity profiles }\end{array}\right.$
7. conductivity

Start with H_{2}^{+}, a lattice with only 2 equivalent sites.
qualitative picture: atomic energy levels
tunneling between identical localized states:
is slow behind a high barrier (small splitting)
is fast behind a low barrier (large splitting)
levels \rightarrow bands, of width related to tunneling rate

For exact degeneracy between left-well and right-well localized states, can choose any linear combination
Localized basis set: $\psi_{\text {localized }}=\psi_{\text {left }}^{(0)}$ or $\psi_{\text {right }}^{(0)}$
Delocalized basis set $\psi_{\text {delocalized }}=2^{-1 / 2}\left[\psi_{\text {left }}^{(0)} \pm \psi_{\text {right }}^{(0)}\right]$

5.73 Lecture \#37

If initially in a localized state, tunneling rate depends on

* height (relative to $E_{n}^{(0)}$) of barrier
* width of barrier
* size of overlap between exponential tails of $\psi_{\text {left }}^{(0)}$ and $\psi_{\text {right }}^{(0)}$
clear that tunneling rate (i.e. reciprocal of adjacent level-splitting) increases
* as $\mathrm{n} \uparrow$ at constant R (internuclear separation)
* as $R \downarrow$ at constant n

double degeneracy
at $\mathrm{R} \rightarrow \infty$
Δ is tunneling splitting - gets larger as $R \downarrow$. Less localization causes tunneling rate to increase. The tunneling rate is $\frac{\Delta E}{h}$ (which has units of $1 / \mathrm{t}$).

N ATOMS ALONG A STRAIGHT LINE

Each electronic state of the isolated atom becomes a band of states for $\infty-$ atom lattice. Energy width of each band increases as the principal quantum number increases because atomic states require more room: $\langle r\rangle_{n} \propto a_{0} n^{2}$. Tunneling gets faster. Greater sensitivity to the world outside a single atom.

Simplified model for ∞ 1-Dimensional Lattice: basis for qualitative insights and early-time predictions.

1. Each ion, called q, has one bound state, $\left|v_{q}\right\rangle$ at $\mathrm{E}_{0}=\left\langle\mathrm{v}_{\mathrm{q}}\right| \mathbf{H}\left|v_{\mathrm{q}}\right\rangle$ [diagonal element of \mathbf{H}] (actually 2 spin-orbitals)
2. Only permit orbitals on adjacent ions to interact [important simplifying assumption], like Hückel theory.
3. symmetry: all ions are equally spaced, $\mathrm{x}_{\mathrm{q}+1}-\mathrm{x}_{\mathrm{q}}=\ell$, and all adjacent-orbital interaction matrix elements are identical

$$
\left\langle v_{\mathrm{q}}\right| \mathbf{H}\left|v_{\mathrm{q}+1}\right\rangle \equiv-\mathrm{A} \quad \text { [off-diagonal elements of } \mathbf{H} \text {] }
$$

($|\mathrm{A}|$ must increase as $\ell \rightarrow 0$)
[reasons for - A sign choice later.]

$$
\text { so } \mathbf{H}=\left(\begin{array}{ccccc}
\mathrm{E}_{0} & -\mathrm{A} & & \mathbf{0} & \\
-\mathrm{A} & \ddots & \ddots & \mathbf{0} & \\
& \ddots & \mathrm{E}_{0} & -\mathrm{A} & \\
\mathbf{0} & & -\mathrm{A} & \ddots & \ddots \\
& & & \ddots &
\end{array}\right)
$$

Since this is infinite, we need a trick to diagonalize it.
try a general variational function

$$
|\varphi\rangle=\sum_{q=-\infty}^{\infty} c_{q}\left|v_{q}\right\rangle
$$

superposition of AO's
each localized at each site
we get requirements on c_{q} by plugging this into the Schrödinger equation

$$
\begin{aligned}
& \mathbf{H}|\varphi\rangle=E|\varphi\rangle \\
& \text { left multiply by }\left\langle v_{\mathrm{q}}\right|
\end{aligned}
$$

LHS
(0...1...0) picks out $\mathrm{q}^{\text {th }}$ row of \mathbf{H}

RHS $\quad E\left[\left\langle v_{q} \mid \varphi\right\rangle\right]=E\left[c_{q}\right]$
$\left\langle v_{q}\right| \mathbf{H}|\varphi\rangle=E\left\langle v_{q} \mid \varphi\right\rangle$

$0=c_{q}\left[E_{0}-E\right]-c_{q-1} A-c_{q+1} A$
comes from the assumed simple form of the model

TRICK: probability of finding e^{-}on each lattice site should be the same for all sites (complex amplitudes might differ but the probabilities will be constant)

$$
\text { let } \quad c_{q}=e^{i k q \ell} \quad\left|c_{q}\right|^{2}=1 \quad \text { for all } q
$$

This choice of c_{q} is a good guess that is consistent with expectation of equal probabilities on each lattice site.
ℓ is the distance between adjacent atoms
q is an integer
$\mathrm{q} \ell$ is the coordinate of the q -th site: looks like an $e^{i k x}$ plane wave k is of dimension ℓ^{-1}

This problem reduces to finding the allowed values of k.
The periodicity of the lattice provides the important result, that if k is replaced by k^{\prime}, where $k^{\prime}=k+\frac{2 \pi}{\ell}$, the wavefunction does not change (translational symmetry).

$$
c_{q}^{\prime}=e^{i k^{\prime} q \ell}=e^{\left(i k q \ell+i \frac{2 \pi}{\ell} \ell\right)}=e^{i k q \ell} \underbrace{e^{i 2 \pi q}}_{=1}=c_{q}
$$

Since all distinguishable $|\varphi\rangle$ may be generated by choosing the value of k in the interval $-\frac{\pi}{\ell} \leq k<\frac{\pi}{\ell}$, restrict k to this range; this range of k is called the "First Brillouin zone".

Return to question about what happens when E is not in the range allowed by this range of k. Then E is not in the 1st Brillouin Zone. Next lecture [get another part of the band structure using qualitative perturbation theory rather than a matrix diagonalization calculation].

$$
\text { Plug } \quad \begin{aligned}
c_{q} & =e^{i k q \ell} \text { into Schrödinger Equation } \\
0 & =c_{q}\left(E_{0}-E\right)-A\left(c_{q+1}+c_{q-1}\right) \\
0 & =e^{i k q \ell}\left(E_{0}-E\right)-A\left(e^{i k(q+1) \ell}+e^{i k(q-1) \ell}\right)
\end{aligned}
$$

divide by $e^{i k q \ell}$ and rearrange

This is the condition on E, k that must be satisfied for all eigenfunctions of the Schrödinger equation!

$$
E=E_{0}-2 A \cos k \ell
$$

E varies continuously over finite interval $E_{0} \pm 2 A$

The choice $\left\langle v_{q}\right| \mathbf{H}\left|v_{q+1}\right\rangle=-A$ leads to a minimum E at $k=0$.

Are these all of the allowed energy levels that arise from a single orbital at each lattice site? Apparently not - see Lecture \#38. They are only half of the states. [One orbital per atom \rightarrow two spin-orbitals per atom.
Antisymmetrization gives another separate band.] like singlet vs. triplet.
We could repeat the calculation looking for a higher energy state at each site.
Would get a broader band centered at higher energy.

Take a closer look at the spatial form of $\varphi_{k}(x) \equiv\left\langle x \mid \varphi_{k}\right\rangle$

$$
\varphi_{k}(x)=\left\langle x \mid \varphi_{k}\right\rangle=\sum_{q=-\infty}^{+\infty} e^{i k q \ell} \underbrace{\left\langle x \mid v_{q}\right\rangle}_{v_{q}(x)} \quad \begin{aligned}
& \text { treated as sum over } \\
& \text { localized functions }
\end{aligned}
$$

The goal is to replace the infinite sum by a single term:

This is called a Bloch function

Begin by requiring that $\varphi_{k}(x)=\sum_{q=-\infty}^{\infty} e^{i k q \ell} v_{q}(x)$
Translational symmetry imposes a relationship between $\mathrm{v}_{\mathrm{q}}(x)$ and $\mathrm{v}_{0}(x)$
each $v_{q}(x)$ is localized at site q.
This is a single function rather than a sum of separate localized functions.

$$
\begin{aligned}
v_{q}(x) & =v_{0}(x-q \ell) \\
\varphi_{k}(x) & =\sum_{q=-\infty}^{\infty} e^{i k q \ell} v_{0} \psi_{x}(x-q \ell) \\
\varphi_{k}(x+\ell) & =\sum_{q=-\infty}^{\infty} e^{i k q \ell} \underbrace{v_{0}(x+\ell-q \ell)}_{=v_{0}(x-(q-1) \ell)} \\
& =\underbrace{}_{L^{i k \ell} \sum_{q=-\infty}^{\infty} e^{i k(q-1) \ell} v_{0}(x-(q-1) \ell)}
\end{aligned}
$$

shift x by
-q ℓ to get from site q to site 0

Re-index the sum (replace q-1 by q) get original function multiplied by $e^{i k \ell}$

$$
\begin{aligned}
& \varphi_{k}(x+\ell)=e^{\mathrm{ik} \ell} \varphi_{k}(x) \\
& \text { translation } \\
& \text { by } \ell
\end{aligned}
$$

This form of ϕ_{k} has all of the symmetry properties we will need. This form is sufficient to satisfy the symmetry requirements (boundary conditions). This means, instead of writing $\varphi_{k}(x)$ as sum over atomlocalized $v_{q}(x)$'s, it is possible to write $\varphi_{k}(x)$ for all k as a product of 2 factors.

$$
\varphi_{k}(x)=e^{i k x} u_{k}(x)
$$

this has the properties of the above sum form, but is more general
$1^{\text {st }}$ factor conveys translational symmetry of a plane wave with wavevector $k, 2^{\text {nd }}$ factor builds in translational symmetry of a lattice with spacing ℓ. This is a more general expression that incorporates all of the properties of the original definition of $\varphi_{k}(x)$ as a sum over localized orbitals.

$$
\begin{aligned}
& u_{k}(x+\ell)=u_{k}(x) \\
& \text { note that } \quad \varphi_{k}(x+\ell)=e^{i k x} e^{i k \ell} u_{k}(x+\ell)=e^{i k \ell}\left[e^{i k x} u_{k}(x)\right] \\
&=e^{i k \ell} \varphi_{k}(x)
\end{aligned}
$$

as required.

Note also that $\left|\varphi_{k}(x+n \ell)\right|^{2}=\left|\varphi_{k}(x)\right|^{2}$ implies that, as required, the e^{-}has equal probability of being found on each site.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

