5.73

Quiz 11

1.

Consider the Hamiltonian matrix

$$
\mathbf{H}=\frac{1}{3}\left(\begin{array}{ccc}
4 & 1 & 1 \\
1 & 7 & -2 \\
1 & -2 & 7
\end{array}\right)
$$

which has eigenvectors

$$
6^{-1 / 2}\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right), 3^{-1 / 2}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), 2^{-1 / 2}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right),
$$

and eigenvalues 1,2 , and 3 (not necessarily in the same order as the eigenvectors).
A. Determine the one-to-one correspondence between eigenvectors and eigenvalues.

$\frac{1}{3}\left(\begin{array}{ccc}4 & 1 & 1 \\ 1 & 7 & -2 \\ 1 & -2 & 7\end{array}\right)\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)=\frac{1}{3}\left(\begin{array}{c}6 \\ -3 \\ -3\end{array}\right)$	eigenvalue 1
$\frac{1}{3}\left(\begin{array}{ccc}4 & 1 & 1 \\ 1 & 7 & -2 \\ 1 & -2 & 7\end{array}\right)\left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right)=\frac{1}{3}\left(\begin{array}{c}6 \\ 6 \\ 6\end{array}\right)$	
$\frac{1}{3}\left(\begin{array}{ccc}4 & 1 & 1 \\ 1 & 7 & -2 \\ 1 & -2 & 7\end{array}\right)\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)=\frac{1}{3}\left(\begin{array}{c}0 \\ 9 \\ -9\end{array}\right)$	eigenvalue 2

B. Construct, by assembling eigenvectors in the right way, the matrix \mathbf{T} which you expect will diagonalize H in the sense THT^{\dagger} (but do not verify that it actually diagonalizes \mathbf{H}).
T is either $\left(\begin{array}{ccc}\left(\frac{4}{6}\right)^{1 / 2} & 3^{-1 / 2} & 0 \\ -\left(\frac{1}{6}\right)^{1 / 2} & 3^{-1 / 2} & 2^{-1 / 2} \\ -\left(\frac{1}{6}\right)^{1 / 2} & 3^{-1 / 2} & -2^{-1 / 2}\end{array}\right)$ or its transpose.
C. The time-evolution operator is: $\mathbf{U}\left(\mathrm{t}, \mathrm{t}_{0}\right)=\exp \left[-\mathrm{iH}\left(\mathrm{t}-\mathrm{t}_{0}\right) / \hbar\right]$. The matrix $\mathbf{U}\left(\mathrm{t}, \mathrm{t}_{0}\right)$, expressed in the same basis set of the original non-diagonal \mathbf{H} is

$$
\mathbf{U}=\mathbf{T}^{\dagger} \exp \left[-\mathrm{i} \mathbf{T H} \mathbf{T}^{\dagger}\left(\mathrm{t}-\mathrm{t}_{0}\right) / \hbar\right] \mathbf{T}
$$

where THT † is diagonal. Write the 3×3 diagonal matrix:

$$
\begin{gathered}
\exp \left[-i \mathbf{T H T}^{\dagger}\left(t-t_{0}\right) / \hbar\right]= \\
\mathbf{T H T}^{\dagger}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right) \\
\mathbf{U}=\mathbf{T}^{\dagger}\left(\begin{array}{ccc}
e^{-i\left(t-t_{0}\right) / \hbar} & 0 & 0 \\
0 & e^{-i 2\left(t-t_{0}\right) / \hbar} & 0 \\
0 & 0 & e^{-i 3\left(t-t_{0}\right) / \hbar}
\end{array}\right) \mathbf{T}
\end{gathered}
$$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

