Angular Momentum Matrix Elements Derived from Commutation Rules

LAST TIME: * derived all [,]=0 Commutation Rules needed to block diagonalize \mathbf{H} :

$$
\mathbf{H}=\frac{\mathbf{p}_{r}^{2}}{2 \mu}+\left[\frac{\mathbf{L}^{2}}{2 \mu \mathbf{r}^{2}}+V(\mathbf{r})\right] \text { in }\left|n L M_{L}\right\rangle \text { basis sets }
$$

${ }^{*} \varepsilon_{\text {ijk }}$ Levi-Civita antisymmetric tensor - useful properties, especially for derivations involving components of angular momenta

* Commutation Rule DEFINITIONS of Angular Momentum and
"Vector" Operators $\left[\mathrm{L}_{i}, \mathrm{~L}_{j}\right]=i \hbar \sum_{k} \varepsilon_{i j k} \mathrm{~L}_{k}$

$$
\left[\mathrm{L}_{i}, \mathrm{~V}_{j}\right]=i \hbar \sum_{k} \varepsilon_{i j k} \mathrm{~V}_{k}
$$

Classification of operators: universality of angular factors of matrix elements for 3D central force problems.

TODAY: Obtain all angular momentum matrix elements from the commutation rule definition of an angular momentum, without ever looking at a differential operator or a wavefuncton. Possibilities for phase inconsistencies. [Similar generalization to derivation for angular parts of matrix elements of all "spherical tensor" operators, $\mathbf{T}_{q}^{(k)}$.]

1. Define Components of an Angular Momentum using a Commutation Rule.
2. Define the eigenbasis for J^{2} and $\mathrm{J}_{\text {z. }}|\lambda \mu\rangle$ (we know the eigenbasis must exist, but we start out not knowing anything about it).
3. Show $\lambda \geq \mu$.
4. Raising and lowering operators (like $\mathbf{a}^{\dagger}, \mathbf{a}$ and $\boldsymbol{x} \pm i \boldsymbol{p}$ for the harmonic oscillator). $\mathbf{J}_{ \pm}|\lambda \mu\rangle$ gives eigenfunction of \mathbf{J}_{z} that belongs to the $\mu \pm \hbar$ eigenvalue and the eigenfuncton of \mathbf{J}^{2} that belongs to the λ eigenvalue.
5. Must be at least one $\mu_{\text {min }}$ pair of eigenstates of \boldsymbol{J}_{z} such that

$$
\begin{aligned}
& \mathbf{J}-\left(\mathbf{J}_{+}\left|\lambda \mu_{\text {MAX }}\right\rangle\right)=0 \\
& \mathbf{J}+\left(\mathbf{J}_{-}\left|\lambda \mu_{\text {MIN }}\right\rangle\right)=0
\end{aligned}
$$

This leads to: $\hbar\left(\frac{n}{2}\right), \lambda=\hbar^{2} \frac{n}{2}\left(\frac{n}{2}+1\right)$, and n is a positive integer.
6. Obtain all matrix elements of $\mathbf{J}_{x}, \mathbf{J}_{y}, \mathbf{J}_{ \pm}$, but there remains. phase ambiguity for the non-zero matrix elements.
7. Standard phase choice: "Condon and Shortley".

1. Commutation Rule $\left[\mathrm{J}_{i}, \mathrm{~J}_{j}\right]=i \hbar \sum_{k} \varepsilon_{i j k} \mathrm{~J}_{k}$

This is a general definition of angular momentum (call it $\mathbf{J}, \mathbf{L}, \mathbf{S}$, anything!). Each angular momentum generates a state space.
2. eigenfunctions of \mathbf{J}^{2} and \mathbf{J}_{z} exist (Hermitian operators. Hermiticity is guaranteed by symmetrization.)

$$
\begin{aligned}
& \mathbf{J}^{2}|\lambda \mu\rangle=\lambda|\lambda \mu\rangle \\
& \mathbf{J}_{z}|\lambda \mu\rangle=\mu|\lambda \mu\rangle
\end{aligned}
$$

but what are the values of λ, μ ?
\mathbf{J}^{2} and \mathbf{J}_{z} are Hermitian, therefore λ, μ are real
3. find upper and lower bounds for μ in terms of $\lambda: \lambda \geq \mu^{2}$

$$
\langle\lambda \mu|\left(\mathbf{J}^{2}-\mathbf{J}_{z}^{2}\right)|\lambda \mu\rangle=\lambda-\mu^{2} \quad \text { Want to show that } \lambda-\mu^{2} \text { is } \geq 0 .
$$

but $\mathbf{J}^{2}=\mathbf{J}_{x}^{2}+\mathbf{J}_{y}^{2}+\mathbf{J}_{z}^{2}$

$$
\begin{gathered}
\mathbf{J}^{2}-\mathbf{J}_{z}^{2}=\mathbf{J}_{x}^{2}+\mathbf{J}_{y}^{2} \\
\lambda-\mu^{2}=\langle\lambda \mu| \mathbf{J}_{x}^{2}+\mathbf{J}_{y}^{2}|\lambda \mu\rangle
\end{gathered}
$$

completeness

$$
\lambda-\mu^{2}=\sum_{\lambda^{\prime}, \mu^{\prime}}\left[\langle\lambda \mu| \mathbf{J}_{x}\left|\lambda^{\prime} \mu^{\prime}\right\rangle\left\langle\lambda^{\prime} \mu^{\prime}\right| \mathbf{J}_{x}|\lambda \mu\rangle+\langle\lambda \mu| \mathbf{J}_{y}\left|\lambda^{\prime} \mu^{\prime}\right\rangle\left\langle\lambda^{\prime} \mu^{\prime}\right| \mathbf{J}_{y}|\lambda \mu\rangle\right]
$$

We know that $\mathbf{J}^{\mathbf{2}}$ and \mathbf{J}_{z} are Hermitian because they were constructed by symmetrization of classical mechanical operators.

$$
\begin{aligned}
& \text { Hermitian }\left(\mathbf{A}=\mathbf{A}^{\dagger} \text { or } A_{i j}=A_{j i}^{*}\right): \quad\left\langle\lambda^{\prime} \mu^{\prime}\right| \mathbf{J}_{x}|\lambda \mu\rangle=\langle\lambda \mu| \mathbf{J}_{x}\left|\lambda^{\prime} \mu^{\prime}\right\rangle^{*} \\
& \begin{array}{l}
\left.\left.\lambda-\mu^{2}=\left.\sum_{\lambda^{\prime}, \mu^{\prime}}\left[\left|\langle\lambda \mu| \mathbf{J}_{x}\right| \lambda^{\prime} \mu^{\prime}\right\rangle\right|^{2}+\left|\langle\lambda \mu| \mathbf{J}_{y}\right| \lambda^{\prime} \mu^{\prime}\right\rangle\left.\right|^{2}\right] \geq 0 \\
\text { Thus } \lambda-\mu^{2} \geq 0 \text { and } \lambda \geq \mu^{2} \geq 0 \\
\text { and from these we get } \mu_{\mathrm{MAX}} \leq \lambda^{1 / 2}, \mu_{\mathrm{MIN}} \geq-\lambda^{1 / 2}
\end{array}
\end{aligned}
$$

4. Raising/Lowering Operators

$$
\begin{aligned}
& \mathbf{J}_{ \pm} \equiv \mathbf{J}_{x} \pm i \mathbf{J}_{y} \quad\left(\text { not Hermitian: } \mathbf{J}_{+}^{\dagger}=\mathbf{J}_{-}\right) \quad\left(\text { just like } \mathbf{a}, \mathbf{a}^{\dagger}\right) \\
& {\left[\mathbf{J}_{z}, \mathbf{J}_{ \pm}\right]=\left[\mathbf{J}_{z}, \mathbf{J}_{x}\right] \pm i\left[\mathbf{J}_{z}, \mathbf{J}_{y}\right]} \\
& =i \hbar \mathbf{J}_{y} \pm i\left(-i \hbar \mathbf{J}_{x}\right)= \pm \hbar\left[\mathbf{J}_{x} \pm i \mathbf{J}_{y}\right] \\
& = \pm \hbar \mathbf{J}_{ \pm} \\
& \mathbf{J}_{z} \mathbf{J}_{ \pm}=\mathbf{J}_{ \pm} \mathbf{J}_{z} \pm \hbar \mathbf{J}_{ \pm} \quad \text { right multiply by }|\lambda \mu\rangle \\
& \mathbf{J}_{z}\left(\mathbf{J}_{ \pm}|\lambda \mu\rangle\right)=\mathbf{J}_{ \pm}\left(\mathbf{J}_{z}|\lambda \mu\rangle\right) \pm \hbar \mathbf{J}_{ \pm}|\lambda \mu\rangle \\
& =\mathbf{J}_{ \pm} \mu|\lambda \mu\rangle \pm \hbar \mathbf{J}_{ \pm}|\lambda \mu\rangle \\
& =(\mu \pm \hbar)\left(\mathbf{J}_{ \pm}|\lambda \mu\rangle\right) \text {, which means that }
\end{aligned}
$$

$\left(\mathbf{J}_{ \pm}|\lambda \mu\rangle\right)$ is an eigenfunction of \mathbf{J}_{z} belonging to eigenvalue $\mu \pm \hbar$. Thus $\mathbf{J}_{ \pm}$"raises" or "lowers" the \mathbf{J}_{z} eigenvalue in steps of \hbar.

Similar exercise for $\left[\mathbf{J}^{2}, \mathbf{J}_{ \pm}\right]$to get effect of $\mathbf{J}_{ \pm}$on eigenvalue of \mathbf{J}^{2}
$\left[\mathbf{J}^{2}, \mathbf{J}_{ \pm}\right]=\left[\mathbf{J}^{2}, \mathbf{J}_{x}\right] \pm i\left[\mathbf{J}^{2}, \mathbf{J}_{y}\right]=0 \quad\left(W e\right.$ already knew that $\left.\left[\mathbf{J}^{2}, \mathbf{J}_{i}\right]=0\right)$ $\mathbf{J}^{2}\left(\mathbf{J}_{ \pm}|\lambda \mu\rangle\right)=\mathbf{J}_{ \pm}\left(\mathbf{J}^{2}|\lambda \mu\rangle\right)=\lambda\left(\mathbf{J}_{ \pm}|\lambda \mu\rangle\right)$, which means that
$\left(\mathbf{J}_{ \pm}|\lambda \mu\rangle\right)$ belongs to the same eigenvalue of \mathbf{J}^{2} as $|\lambda \mu\rangle$
$\boldsymbol{J}_{ \pm}$has no effect on λ.

* upper and lower bounds on μ are $\pm \lambda^{1 / 2}$
* $\quad \mathbf{J}_{ \pm}$raises/lowers μ by steps of \hbar
* Since $\mathbf{J}_{x}=\frac{1}{2}\left(\mathbf{J}_{+}+\mathbf{J}_{-}\right)$and $\mathbf{J}_{y}=\frac{1}{2 i}\left(\mathbf{J}_{+}-\mathbf{J}_{-}\right)$,

The only nonzero matrix elements of \mathbf{J}_{i} in the $|\lambda \mu\rangle$ basis set are those where $\Delta \mu=0, \pm \hbar$ and $\Delta \lambda=0$. As for derivation of Harmonic Oscillator matrix elements, we are not assured that all values of μ differ in steps of \hbar. Divide basis states into sets, where the members of each set are related by integer steps of \hbar in μ.
5. For each set, there are μ_{MIN} and $\mu_{\mathrm{MAX}}: \lambda \geq \mu^{2}$

Thus, for each set $\quad \boldsymbol{J}_{+}\left|\lambda \mu_{\text {MAX }}\right\rangle=0$

$$
\left.\mathbf{J} _\lambda \mu_{\mathrm{MIN}}\right\rangle=0
$$

but

$$
\begin{aligned}
\mathbf{J}_{-} \mathbf{J}_{+}=\left(\mathbf{J}_{x}-i \mathbf{J}_{y}\right)\left(\mathbf{J}_{x}+i \mathbf{J}_{y}\right) & =\mathbf{J}_{x}^{2}+\mathbf{J}_{y}^{2}+i \mathbf{J}_{x} \mathbf{J}_{y}-i \mathbf{J}_{y} \mathbf{J}_{x} \\
& =\mathbf{J}_{x}^{2}+\mathbf{J}_{y}^{2}+i\left[\mathbf{J}_{x}, \mathbf{J}_{y}\right] \\
& =\mathbf{J}_{x}^{2}+\mathbf{J}_{y}^{2}+i\left(i \hbar \mathbf{J}_{z}\right) \\
& =\mathbf{J}_{x}^{2}+\mathbf{J}_{y}^{2}-\hbar \mathbf{J}_{z}
\end{aligned}
$$

but $\quad \mathbf{J}_{x}^{2}+\mathbf{J}_{y}^{2}=\mathbf{J}^{2}-\mathbf{J}_{z}^{2}$, thus

$$
\begin{aligned}
& \mathbf{J}_{-} \mathbf{J}_{+}=\mathbf{J}^{2}-\mathbf{J}_{z}^{2}-\hbar \mathbf{J}_{z} \\
& 0=\mathbf{J}_{-} \mathbf{J}_{+}\left|\lambda \mu_{\mathrm{MAX}}\right\rangle=\left(\mathbf{J}^{2}-\mathbf{J}_{z}^{2}-\hbar \mathbf{J}_{z}\right)\left|\lambda \mu_{\mathrm{MAX}}\right\rangle \\
&=\left(\lambda-\mu_{\mathrm{MAX}}^{2}-\hbar \mu_{\mathrm{MAX}}\right)\left|\lambda \mu_{\mathrm{MAX}}\right\rangle
\end{aligned}
$$

$$
\lambda=\mu_{\mathrm{MAX}}^{2}+\hbar \mu_{\mathrm{MAX}}
$$

Similarly for $\mu_{\text {miN }}$

$$
\mathbf{J}_{+} \mathbf{J}_{-}\left|\lambda \mu_{\mathrm{MIN}}\right\rangle=0
$$

$$
\begin{aligned}
& \mathbf{J}_{+} \mathbf{J}_{-}=\mathbf{J}^{2}-\mathbf{J}_{z}^{2}+\hbar \mathbf{J}_{z} \\
& \lambda=\mu_{\mathrm{MIN}}^{2}-\hbar \mu_{\mathrm{MIN}}
\end{aligned}
$$

subtract 2 equations for λ

$$
\begin{aligned}
& 0=\mu_{\mathrm{MAX}}^{2}-\mu_{\mathrm{MIN}}^{2}+\hbar\left(\mu_{\mathrm{MAX}}+\mu_{\mathrm{MIN}}\right) \\
& 0=\left(\mu_{\mathrm{MAX}}+\mu_{\mathrm{MIN}}\right)\left(\mu_{\mathrm{MAX}}-\mu_{\mathrm{MIN}}+\hbar\right)
\end{aligned}
$$

Thus $\mu_{\text {MAX }}=-\mu_{\text {MIN }} \quad$ OR $\quad \mu_{\text {MAX }}=\mu_{\text {MIN }}-\hbar$
(impossible because $\mu_{\text {MAX }}$ cannot be smaller than $\mu_{\text {MIN }}$)
Thus for each set of $|\lambda \mu\rangle, \mu$ goes from $\mu_{\text {max }}$ to $\mu_{\text {MIN }}$ in steps of \hbar

$$
\begin{aligned}
& \mu_{\mathrm{MAX}}=\mu_{\mathrm{MIN}}+n \hbar \\
& \mu_{\mathrm{MAX}}=\frac{n}{2} \hbar
\end{aligned}
$$

Thus μ is either integer or half integer or both!

Thus there will at worst be only two non-communicating sets of $|\lambda \mu\rangle$ because if μ were both integer and $1 / 2$-integer, each set would form a set of μ-values, within which the members would be separated in steps of \hbar.

Now, to specify the allowed values of λ :

$$
\begin{gathered}
\lambda=\mu_{\mathrm{MAX}}^{2}+\hbar \mu_{\mathrm{MAX}}=\left(\frac{n}{2} \hbar\right)^{2}+\hbar\left(\frac{n}{2} \hbar\right)=\hbar^{2} \frac{n}{2}\left(\frac{n}{2}+1\right) \\
\operatorname{let} \frac{\mathrm{n}}{2} \equiv j \\
\mu_{\mathrm{MAX}}=\hbar j \\
\mu_{\mathrm{MIN}}=-\hbar j \\
\lambda=\hbar^{2} j(j+1)
\end{gathered}
$$

Rename our basis states

$$
\begin{aligned}
& \mathbf{J}^{2}|j m\rangle=\hbar^{2} j(j+1)|j m\rangle \\
& \mathbf{J}_{z}|j m\rangle=\hbar m|j m\rangle
\end{aligned}
$$

valid for all angular momentum operators that are certified as an angular momentum by satisfying the defining commutation rule $\left[A_{i}, A_{j}\right]=i \hbar \sum_{k} \varepsilon_{i j k} A_{k}$. We can define an $\left|a m_{a}\right\rangle$ basis set for any angular momentum operator defined as above. We never need to look at the functional form of the $\left\{\psi_{a m_{a}}\right\}$ wavefunctions!
6. $\mathbf{J}_{\mathrm{x}}, \mathbf{J}_{\mathrm{v}}, \mathbf{J}_{ \pm}$matrix elements
recall page 23-3, but in new notation

$$
\begin{array}{cl}
|j m \pm 1\rangle=N_{ \pm} \mathbf{J}_{ \pm}|j m\rangle & \left(\mathbf{J}_{ \pm} \text {raises / lowers } m \mathrm{~b}\right. \\
\text { normalization factor } & \text { (to be determined b } \\
1=\langle j m \pm 1 \mid j m \pm 1\rangle & =\left(N_{ \pm} \mathrm{J}_{ \pm}|j m\rangle\right)^{\dagger}\left(N_{ \pm} \mathrm{J}_{ \pm}|j m\rangle\right)=N_{ \pm}^{*}\langle j m| \mathrm{J}_{\mp} N_{ \pm} \mathrm{J}_{ \pm}|j m\rangle \\
N_{ \pm}^{\dagger} & =N_{ \pm}^{*} \\
\mathrm{~J}_{ \pm}^{\dagger} & =\mathrm{J}_{\mp}
\end{array}
$$

$$
\llbracket=\left|N_{ \pm}\right|^{2}\langle j m| \mathbf{J}_{\mp} \mathbf{J}_{ \pm}|j m\rangle
$$

$$
\begin{aligned}
\mathrm{J}_{\mp} \mathbf{J}_{ \pm} & =\left(\mathrm{J}_{x} \mp i \mathrm{~J}_{y}\right)\left(\mathrm{J}_{x} \pm i \mathrm{~J}_{y}\right)=\mathrm{J}_{x}^{2}+\mathrm{J}_{y}^{2} \pm i\left[\mathrm{~J}_{x}, \mathrm{~J}_{y}\right] \\
& =\mathrm{J}^{2}-\mathbf{J}_{z}^{2} \pm i\left(i \hbar \mathbf{J}_{z}\right)=\mathrm{J}^{2}-\mathrm{J}_{z}^{2} \mp \hbar \mathbf{J}_{z} \\
& =\mathbf{J}^{2}-\mathbf{J}(\mathrm{J} \pm \hbar)
\end{aligned}
$$

$$
=\mathrm{J}^{2}-\mathrm{J}_{z}\left(\mathrm{~J}_{z} \pm \hbar\right)
$$

$$
\mathbb{1}=\left|N_{ \pm}\right|^{2}\left[\hbar^{2} j(j+1)-\hbar^{2}(m(m \pm 1))\right]
$$

$$
\left|N_{ \pm}\right|=\frac{1}{\hbar}[j(j+1)-m(m \pm 1)]^{-1 / 2} \underset{\text { arbit }}{e^{-i \delta_{ \pm}}}
$$

arbitrary phase factor that results from taking square root

$$
\mathbf{J}_{ \pm}|j m\rangle=\hbar[j(j+1)-m(m \pm 1)]^{1 / 2}|j m \pm 1\rangle e^{-i \delta_{ \pm}}
$$

Usual phase choice is $\delta_{ \pm}=0$ for all j, m :
known as the "Condon and Shortley" phase choice
(sometimes an alternative phase choice is used, $\delta_{ \pm}= \pm \pi / 2$, so be careful)
standard phase choice: $\delta_{ \pm}=0$

$$
\begin{aligned}
& \left\langle j^{\prime} m^{\prime}\right| \mathbf{J}_{ \pm}|j m\rangle=\hbar \delta_{j^{\prime} j} \delta_{m^{\prime} m \pm 1}[j(j+1)-m(m \pm 1)]^{1 / 2} \\
& \qquad\left(\begin{array}{l}
\text { or } \left.\hbar \delta_{j j^{\prime}} \delta_{m^{\prime} m \pm 1}\left[j(j+1)-\underline{m\left(m^{\prime}\right)}\right]^{1 / 2}\right) \quad \begin{array}{l}
\text { remember matrix } \\
\text { elements of } \mathbf{x} \text { and }
\end{array} \\
\text { vow, since } \mathbf{J}_{x}=\frac{1}{2}\left(\mathbf{J}_{+}+\mathbf{J}_{-}\right) \\
\begin{array}{l}
\text { in harmonic } \\
\text { oscillator basis set? }
\end{array}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
\left\langle j^{\prime} m^{\prime}\right| \mathbf{J}_{x}|j m\rangle=\frac{\hbar}{2} \delta_{j^{\prime} j} & \left\{\delta_{m^{\prime} m+1}[j(j+1)-m(m+1)]^{1 / 2}\right. \\
+ & \left.\delta_{m^{\prime} m-1}[j(j+1)-m(m-1)]^{1 / 2}\right\}
\end{aligned}
$$

$$
\mathbf{J}_{y}=\frac{1}{2 i}\left(\mathbf{J}_{+}-\mathbf{J}_{-}\right)
$$

two sign surprises

$$
\left.{ }_{m}^{\prime \prime} j^{\prime} m^{\prime}\left|\mathbf{J}_{j}\right| j m\right\rangle=-i \frac{\hbar}{2} \delta_{j j}\left\{\delta_{m^{\prime m+1}}[j(j+1)-m(m+1)]^{1 / 2}\right.
$$

This phase choice leaves all matrix elements of $\mathbf{J}^{2}, \mathbf{J}_{x}$ and $\mathbf{J}_{ \pm}$real and positive.
[If, instead, you use $\delta_{ \pm}=+\pi / 2$, this gives \mathbf{J}_{y} real and $\mathbf{J}_{x}, \mathbf{J}_{ \pm}$imaginary.]

Summary

$$
\begin{aligned}
\|\left\langle j^{\prime} m^{\prime}\right| \mathbf{J}^{2}|j m\rangle & =\delta_{i j} \delta_{m^{\prime} m} \hbar^{2} j(j+1) \\
\langle j m| \overrightarrow{\mathbf{J}}|j m\rangle & =\hat{k} \hbar m \quad\left(\Delta m=0 \text { selects } \hat{k} \mathbf{J}_{z}\right) \\
\langle j m \pm 1| \overrightarrow{\mathbf{J}}|j m\rangle & =\left(\hat{i} \mp \hat{i} \bar{j} \frac{\hbar}{2}[j(j+1)-m(m \pm 1)]^{1 / 2}\right. \\
\hat{i} \mathbf{J}_{x}+\hat{j} \mathbf{J}_{y} & =\frac{1}{2} \hat{i}\left(\mathbf{J}_{+}+\mathbf{J}_{-}\right)+\hat{j} \frac{1}{2 i}\left(\mathbf{J}_{+}-\mathbf{J}_{-}\right) \\
& =\frac{1}{2} \mathbf{J}_{+}(\hat{i}-\hat{i j})+\frac{1}{2} \mathbf{J}_{-}(\hat{i}+\hat{i j})
\end{aligned}
$$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

