
  

  
 

 
 

  

 

 
 

 

 

  
 

   
 

 
  

 
   

       
     

 
    

   
   

  	    
 

 
 

 
  

 

ijk Levi-Civita antisymmetric tensor — useful properties, especially 

5.73 Lecture #23 23 - 1 
Angular Momentum Matrix Elements Derived from Commutation Rules 

LAST TIME: * derived all [, ]=0 Commutation Rules needed to block diagonalize H: 

L2 

2 µr2 + V (r)⎡ ⎤pr 
2 

H= 
2 µ 

+ in nLM L  basis sets⎢
⎣

⎥
⎦ 

*�ijk Levi-Civita antisymmetric tensor — useful properties, especially 
for derivations involving components of angular momenta 

* Commutation Rule DEFINITIONS of Angular Momentum and 
“Vector” Operators ⎡⎣Li, L j ⎤⎦ = i!∑ε ijk Lk 

k 

⎡⎣Li, Vj ⎤⎦ = i!∑ε ijk Vk 
k 

Classification of operators: universality of angular factors of matrix 
elements for 3D central force problems. 

TODAY: Obtain all angular momentum matrix elements from the commutation 
rule definition of an angular momentum, without ever looking at a 
differential operator or a wavefuncton. Possibilities for phase 
inconsistencies. [Similar generalization to derivation for angular parts 
of matrix elements of all “spherical tensor” operators,Tq

(k ).] 

1. Define Components of an Angular Momentum using a Commutation Rule. 

2. Define the eigenbasis for J2 and Jz. |"#⟩ (we know the eigenbasis must exist,
but we start out not knowing anything about it). 

3. Show " ≥ #. 

4. Raising and lowering operators (like a†, a and ' ± )* for the harmonic 
oscillator). J±|"#⟩ gives eigenfunction of Jz that belongs to the # ± ℏ 
eigenvalue and the eigenfuncton of J2 that belongs to the " eigenvalue. 

5. Must be at least one µMIN pair of eigenstates of Jz such that 
J–(J+|"#MAX⟩) = 0 
J+(J– |"#MIN⟩) = 0 

This leads to: ℏ ,&'- , " = ℏ' & &
' + 1 -, and n is a positive integer.' , 

6. Obtain all matrix elements of Jx, Jy, J±, but there remains. phase ambiguity 
for the non-zero matrix elements. 

7. Standard phase choice: “Condon and Shortley”. 
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5.73 Lecture #23 23 - 2 
1. Commutation Rule ⎡⎣Ji, J j ⎤⎦ = i!∑ε ijk Jk 

k 
This is a general definition of angular momentum (call it J, L, S, anything!). 
Each angular momentum generates a state space. 

2. eigenfunctions of J2 and Jz exist (Hermitian operators.  Hermiticity is 
guaranteed by symmetrization.) 

J2 λµ = λ λµ 

λµ = µ λµJz 
but what are the values of λ,µ? 
J2 and Jz are Hermitian, therefore λ,µ are real 

3. find upper and lower bounds for µ in terms of λ : λ ≥ µ2 

(J2 − J z 
2 )λµ = λ − µ 2 Want to show that �–µ2 is ≥ 0.λµ 

2 2 2but J2 = J x + J y + J z 
2 2 2J2 − Jz = J x + J y 

J x 
2 + J2 

yλ − µ 2 = λµ λµ 

completeness 

⎤λ − µ2 = ∑ ⎡
⎣ λµ J λ′µ′ λ′µ′ J λµ + λµ J λ′µ′ λ′µ′ J λµx x y y ⎦λ′ ,µ′ 

We know that J2 and Jz are Hermitian because they were constructed by 
symmetrization of classical mechanical operators. 

Hermitian (A = A† or A = A* ): J λµ = λµ J *λ′µ′ λ′µ′ ij ji x x 

22 ⎤
λ − µ2 = ∑ ⎡ 

λµ J + λµ Jλ′µ′ λ′µ′ ⎥ ≥ 0⎢ x y 
λ′ ,µ′ ⎣ ⎦ 

Thus λ− µ2 ≥ 0 and λ ≥ µ2 ≥ 0 

and from these we get µMAX 
≤ λ1/2 ,µMIN 

≥ −λ1/2 
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5.73 Lecture #23 23 - 3 
4. Raising/Lowering Operators 

J± ≡ J x ± iJy (not Hermitian: J+
† = J− ) ( just like a,a† ) 

[Jz ,J± ] = [Jz ,Jx ] ± i ⎡⎣Jz ,Jy ⎤⎦ 
= i!Jy ± i (−i!Jx ) = ±! ⎡⎣Jx ± iJy ⎤⎦ 
= ±!J± 

Jz J± = J±Jz ± !J± right multiply by λµ 

λµ λµ λµ 
= J± µ 

) ± !J±Jz (J± ) = J± (Jz 

λµ λµ 
= ( µ ± !)(J± 

± !J± 

λµ ), which means that 

(J±∣�µ〉) is an eigenfunction of Jz belonging to eigenvalue µ ± !. 
Thus J± “raises” or “lowers” the Jz eigenvalue in steps of !. 

Similar exercise for ⎡⎣J
2,J± ⎤⎦ to get effect of J±  on eigenvalue of J2 

⎡⎣J
2,J± ⎤⎦ = ⎡⎣J

2,Jx ⎤⎦ ± i ⎡⎣J
2,Jy ⎤⎦ = 0 (We already knew that ⎡⎣J

2,Ji ⎤⎦ = 0) 
J2 (J± λµ λµ λµ ), which means that ) = λ(J±) = J± (J2 

λµ )  belongs to the same eigenvalue of J2  as λµ(J± 

J±  has no effect on λ. 
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5.73 Lecture #23 23 - 4 
* upper and lower bounds on µ are ±λ1/2 

* J± raises/lowers µ by steps of !" 

1 1* Since J x = 
2 
(J+ + J− )  and J y = 

2i 
(J+ − J− ), 

The only nonzero matrix elements of Ji in the |�µ〉 basis set are those where 
∆µ = 0, ±! and ∆ � = 0. As for derivation of Harmonic Oscillator matrix elements, 
we are not assured that all values of µ differ in steps of !. Divide basis states 
into sets, where the members of each set are related by integer steps of ! in µ. 

5. For each set, there are µMIN and µMAX:λ ≥ µ 2 

Thus, for each set J+|λµMAX> = 0 
J–|λµMIN> = 0 

but J− J+ = (Jx − iJy )(Jx + iJy ) = J2 
x + J2 

y + iJx Jy − iJyJx 
= J2 

x + J2 
y + i ⎡⎣Jx , Jy ⎤⎦ 

= J2 
x + J2 

y + i i( !Jz ) 
= J2 

x + J2 
y − !Jz 

but J2 
x + J2 

y = J2 − J2 
z , thus 

J− J+ = J2 − J2 
z − !Jz 

λµMAX = (J2 − J2 
z − !Jz )0 = J−J+ λµMAX 

= 2(λ − µMAX − !µMAX ) λµMAX 

λ = µ2MAX + !µMAX 

Similarly for µMIN 

λµMIN = 0J+J− 

4
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5.73 Lecture #23 23 - 5 

J+ J− = J2 − Jz
2 + !Jz 

λ = µMIN 
2 − !µMIN 

subtract 2 equations for λ 
2 2 now factor0=µMAX − µMIN + !(µMAX + µMIN ) 

this equation
0=(µMAX + µMIN )(µMAX − µMIN + !) 

OR µMAX = µMIN − ! 
(impossible because µMAX cannot be smaller than µMIN) 

Thus for each set of λµ , µ goes from µMAX to µMIN in steps of ! 

+ n!µMAX = µMIN 

Thus there will at worst be only two non-communicating sets of |�µ⟩ because 
if µ were both integer and 1/2-integer, each set would form a set of µ-values, 
within which the members would be separated in steps of !. 

Now, to specify the allowed values of λ: 

Thus µMAX = −µMIN 

µMAX = 
n 

2 
! 

Thus µ is either integer or half integer or both! 

2
⎛ n ⎞ ⎛ n ⎞ ⎛ n ⎞λ = µMAX 

2 + !µMAX = ⎝⎜ 2 
!⎠⎟ + !⎝⎜ 2 

!⎠⎟ = !2
n 
⎝⎜ 2 

+1⎠⎟2 

let n
2 
≡ j 

! 
µMAX = !j 
µMIN = −!j 
λ = !2 j j +1( ) 

j either integer or 
half integer or both 
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5.73 Lecture #23 23 - 6 
Rename our basis states 

J2∣jm〉 = !2j(j + 1)∣jm〉 
Jz∣jm〉 = !m∣jm〉 

valid for all angular momentum operators that are certified as an angular momentum by 

satisfying the defining commutation rule ⎡⎣Ai ,Aj ⎤⎦ = i!∑εijk Ak . We can define an ama 
k

basis set for any angular momentum operator defined as above. We never need to look at the 
functional form of the {ψ ama } wavefunctions! 

6. Jx, Jy, J± matrix elements 

recall page 23-3, but in new notation 

jm± 1 = N±J± jm  (J±  raises / lowers m by 1) 

normalization factor (to be determined below) 

1 = jm ±1 jm ±1 = (N±J± 
jm )† (N±J± 

jm ) = N±
* jm jm J∓ N±J± 

N± 
† = N± 

* 

J† ± = J∓ ! 

2 
= jm jm N± J∓ J± 

use this to evaluate matrixJ J± 
= (J ∓ iJ )(J ± iJ ) = J2 + J2 ± i ⎡⎣J ,J ⎤⎦∓ x y x y x y x y elements of J∓J± 

= J2 − J2 
z ± i(i"J ) = J2 − J2 

z ∓ "J z 

= J2 − J z (J z ± ")
z

1 = N±
2 ⎡⎣!

2 j( j + 1) − !2 (m(m ± 1))⎤⎦ 
1 ]−1/2 e− iδ±= [ j( j +1) − m(m ± 1) N± ! arbitrary phase factor that 

results from taking square root 

]1/2 jm = ![ j( j +1) − m(m ±1) jm ±1 e− iδ±J± 

Usual phase choice is δ± = 0 for all j,m : 
known as the “Condon and Shortley” phase choice 

(sometimes an alternative phase choice is used, δ± = ± π 2,  so be careful) 
Revised August 17, 2020 8:21 AM 
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5.73 Lecture #23 23 - 7 
standard phase choice: �± = 0 

]1/2 jm = !δ j jδ [ j( j +1) − m(m ±1) j′m′ J± ' m m′ ±1 

⎛ ⎞or !δ jj′δ ⎡ j j( +1) − m(m′)⎤
1/2 

remember matrix 
m m′ ±1⎝⎜ ⎣⎢ ⎦⎥ ⎠⎟ elements of x and 

p in harmonic1
Now, since J = (J + J− ) oscillator basis set?x 2 + 

1 

′j ′m J x jm = 
! 
2δ j ' j δ ′m m+1 

j( j +1)− m(m+1) ⎡⎣ ⎤⎦ 
1/2 { 

+δ ′m m−1 
j( j +1)− m(m−1) ⎡⎣ ⎤⎦ 

1/2}
J y = (J+ − J− )2i 

′j ′m Jy jm = −i ! 
2 
δ j ' j δ ′m m+1 j( j +1) − m(m +1) [ ]1/2 { 

−δ ′m m−1 j( j +1) − m(m −1) [ ]1/2 }
two sign 
surprises 

This phase choice leaves all matrix elements of J2, Jx and J± real and positive. 

[If, instead, you use �± = +π/2, this gives Jy real and Jx,J± imaginary.] 

J2 jm = δ j j′ δm m !
2 j j( +1)j ′m′ ′ 

jm J 
" 

jm = k̂!m (∆ m = 0 selects k̂Jz ) 
" ) ! 1/2 Summary  jm ± 1 J jm = ( î  ∓ iĵ  

2 
⎡⎣ j j( + 1) − m (m ±1)⎤⎦ 

1î Jx + ĵJy = î (J+ + J− ) + ĵ  
2
1
i 
(J+ − J− )2 

= 
1
2 

J+ ( î  − iĵ ) + 
1
2 

J− ( î  + iĵ ) 
7
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