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5.73 Lecture #19 19 - 1 

Density Matrices I 
(See CTDL pp. 252-263, 295-307**, 153-163, 199-202, 290-294) 

Last time: Variational Method 
!⎡Linear variation: 0 = H − εS ⇒ 0 = H − ε1⎢ 

⎢ 
⎢ ψ = c φ = 0∑ n n

dε 

⎢ n dc⎣ n 

[Variational method vs. perturbation theory] 

TODAY 
ψ phase ambiguity – but for every observable each state always appears as a 

bra and a ket. 
What is needed to encode motion in the probability density? A superposition 

of eigenstates belonging to several different values of E. 
Coherent superposition vs. statistical mixture: think about polarized light. 

ρ no phase ambiguity in density matrix, ∣ψ〉⟨ψ∣, an N × N matrix 
* “coherences” in off-diagonal position 
* “populations” along diagonal 

A = Tr(ρA) = Tr(Aρ) 

Quantum Beats 
prepared state → ρ 
detection → D  (detect or destroy coherences) 

ρ(t) 
equations of motionΑ t 

d i ∂ΑΑ = [Η, Α] + expectation valuedt ! ∂t each element of � encodes important information 

i! d
dt 
ρ = [Η(t),ρ] * state: � 

* evolution: H 
* detection: D 
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5.73 Lecture #19 19 - 2 

Let us define a quantity called “Density Matrix” 

ρ ≡ ψ ψ 

ψ can be any sort of QM wavefunction 
* eigenstate of H 
* coherent superposition of several eigenstates of H 

but ψ cannot represent a statistical (i.e. incoherent) mixture of several different ψ’s 

However, ρ can represent a statistical (i.e. equilibrium) mixture of states! 

ρ ≡ p = pψ k ψ k∑ 
k

k 
∑ 

k
k 
ρk 

probability of each contributing term to ρ∑ p = 1 
k 

Example 

* one beam of linearly polarized light, with its polarization axis at 45° 
(ε-field) 

ê 

y 45° ê = 2−1/ 2( êx + êy ) 
x 

* two  superimposed beams of linearly polarized light, 50% along êx, 
50% along êy. Call this a statistical mixture state. 

These 2 cases seem to be identical if you make 2 measurements with 
analyzer polarizers along êx then êy. But the 2 cases are different with 
respect to 2 measurements with analyzer polarizers along 2−1/ 2(êx + êy )
and then along 2−1/ 2(êx − êy). 
In the statistical mixture, it does not matter how the analyzer is oriented. 
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5.73 Lecture #19 19 - 3 
What are the properties of ρ? 

1. ρ for a pure state is Hermitian with positive elements along the diagonal 
and other elements off-diagonal. ρ ≡ ψ ψ so evaluate matrix elements of ρ 

can expand |ψ〉ρ = n ψ ψ m 
nm in any basis set,ψ = ∑c n 

n but H eigenbasisc c * 
n m is most useful. 

ρ = c c * 
nm n m 

ρ† ⎡ 
* 

* ⎤but ( ) = ρ = m ψ ψ n 
mn ⎦nm ⎣ 

= ψ m n ψ = n ψ ψ m = ρ 
nm 

∴ ρ† = ρ ∴ ρ passes the Hermiticity test that all 
observable quantities must pass! 
So if ρ is observable, what does it tell us? 

2 
ρ = n ψ ψ n = c c * = c ≥ 0 

nn n n n 

positive along diagonal 

2. 2 × 2 Example Coherent Superposition vs. Statistical Mixture 

= 2−1/2 ⎛ 1 ⎞ 
a coherent superposition stateψ 

⎝⎜ ±1 ⎠⎟ 

1 ⎛ 1 ⎞ 1 ⎛ 1 ±1 ⎞ρcs = ( 1 ±1 ) = 
2 ⎝⎜ ±1 ⎠⎟ 2 ⎝⎜ ±1 1 ⎠⎟ 

Trace ρ = 1 

1 ⎛ 2 ±2 ⎞ 1 ⎛ 1 ±1 ⎞ρ2 = 
4 ⎝⎜ ±2 2 ⎠⎟ 

= 
2 ⎝⎜ ±1 1 ⎠⎟ 

ρ2 = ρ 

Now consider a statistical mixture state. 
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5.73 Lecture #19 19 - 4 
1 1 1 0ρsm = (1 0) + (0 1)0 12 2 

⎞
⎠ 

⎛
⎝ 

⎞
⎠ 

⎛
⎝ 

1 1 0 = trace ρ = 10 12 
⎞
⎠ 

⎛
⎝ 

The difference is in the off-diagonal positions of ρ 

diagonal elements → “populations” (statistical mixture states have 
off-diagonal elements → “coherences” strictly diagonal ρ) 

Expectation values of Â in terms of ρ 

completeness 

these are three simpleA = ψ A ψ = ∑ ψ|k k A j j|ψ 
numbers and can be 

j,k rearranged in any order. 

j ψ ψ k∑ A= 
j,k ρ

jk 

(ρA) 
⟨A〉 = Trace (�A)! 

kj 

a fantastic labor≡ Trace(ρA) saving and insight 
generating result! 

∑= 
jj 

j 

⎤ 
⎥
⎦ 

∑∑Could have arranged the factors A
kj 

j|ψ ψ|k = (Aρ) = Trace(Aρ)
kk 

j,k k 

A = Trace(Aρ ) = Trace(ρ A) 

So ρ describes the state of system, A describes a measurement 
to be made on the system 

simple prescription for calculating 〈A〉 

The separation between initial preparation, evolution, and 
measurement of a specific observable becomes very convenient 
and instructive. 
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5.73 Lecture #19 19 - 5 
Example: Quantum Beats 

Preparation, evolution, detection 

magically prepare some coherent superposition state Ψ(t) 

−iEnt !Ψ( )t = N ∑a ψ en n 
n Several eigenstates of H. 

Evolve freely without 
any time-dependent 

⎤ 
⎥
⎦ 

−1/2 
2 

a⎢ n⎣ n 

⎡∑N = 

normalization 
intervention 

ρ ( )t = Ψ(t) Ψ(t) 

Case (1): Detection: only one of the eigenstates, �1, in the superposition is 
capable of giving fluorescence that our detector can “see”. (Build a 
detector matrix out of the same form as the selected bright state in ρ.) 

⎛ ⎞1 0 ! 
0 0 0 
" 0 0 

a projection operator 
(designed to project out only the |ψ1〉 part 
of the state vector or the �11 part of �. 

⎜
⎜ 
⎜⎝ 

⎟
⎟ 
⎟⎠ 

ψ
1 
=Thus ψD = 

1 

⎛ ⎞ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎟⎠ 

2 *e − i E1−E2 )t !( "a1 a1a2 

2a2 

2a3 

# 

⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎜⎝ 

ρ = N 2 

This particular D picks 
out only 1st row of �.= 1 Ψ Ψ 2ρ12 

− iE1t ! + iE2t != N 2 e a2
* eρ12 a1 ⎛ 2 a1a

*
2e

− iω12t stuff !a1 

0 0 0 0 

" " " " 

⎞ 
⎟
⎟
⎟ 

⎜
⎜
⎜ 

D t =Trace(Dρ) = N 2 Trace 

⎠⎝ 
2 no time dependence!= N2 a1 

You do not need to work out the full Dρ matrix product! 
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5.73 Lecture #19 19 - 6 
case (2): a particular linear combination of eigenstates is bright: the initial (i.e. 

at t = 0) state 2–1/2(�1 + �2) has 〈D〉 = 1. 
a projection operator. 
How much of the original1D = + +ψ1 ψ 2 )( ψ1 ψ 2 ) state is present in the2 ( 
evolved state?1 = + + +ψ1 ψ1 ψ 2 ψ 2 ψ1 ψ 2 ψ 2 ψ1 

⎤⎦2 
⎡⎣ 

⎡ ⎞ ⎤⎛ ⎛⎞⎛ ⎛⎞ ⎞1 0 0 ! 0 0 0 ! 0 1 0 ! 0 0 0 !⎢
⎢
⎢
⎢ 

⎥
⎥
⎥
⎥ 

⎟ 
⎟ 
⎟
⎟⎠ 

⎜ 
⎜ 
⎜
⎜⎝ 

⎟ 
⎟ 
⎟
⎟⎠ 

+ 
⎜ 
⎜ 
⎜
⎜⎝ 

⎟ 
⎟ 
⎟
⎟⎠ 

⎜ 
⎜ 
⎜ 
⎜⎝ 

⎟ 
⎟ 
⎟
⎟⎠ 

+ 
⎜ 
⎜ 
⎜
⎜⎝ 

1 = 
2 

0 1 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
" 0 0 0 

1 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
" 0 0 0 

+ 

0 0 0 0 0 0" " ⎣ ⎦ 
⎛ ⎞1 1 0 ! 

1 1 0 0 
0 0 0 0 
" 0 0 0 

⎜ 
⎜ 
⎜
⎜⎝ 

⎟ 
⎟ 
⎟ 
⎟⎠ 

1D = 
2 

1 -1 0 0 
-1 1 0 0 
0 0 0 0 
0 0 0 0 

⎡ ⎤⎛ ⎞
1 ⎥

⎥
⎥⎦ 

⎜
⎜⎜ 

⎟
⎟⎟⎠ 

if the bright state had been 2-1/ 2 (ψ1 − ψ 2 ), then D = 
⎢
⎢
⎢ 2

⎝⎣ ⎞⎛1 why do we need to look at 
only the 1,2 block of � N2Trace (Dρ Trace) = ⎟

⎠ 
⎜
⎝
⎜ ⎟ 

The 1,2 block is the only2 * e + i(E1−E2 )t 

2 

1( )11 
⎡ 
⎣⎢ 

⎤!N 2Dρ + a1 a2a1 = part of D that picks out⎦⎥2 something that can 
21 * e − i(E1−E2 )tN 2 appear along the diagonal⎡ ⎤( ) !Dρ + a1a2 a2 = of Dρ⎣⎢ ⎦⎥22 2 
21Trace(Dρ ) = N 2 ⎡ + 

2 
+ 2Re ⎡a1

* a2 e
+ iω12t ⎤⎤a1 a2 ⎣ ⎦⎦⎥2 ⎣⎢ 
beat note at ω12 

[if the bright state had been 2–1/2(ψ1–ψ2), then Tr(Dρ) would 
be the same except for –2Re[ ] ] 

2 2 [1± cosω12t] (N2 = 1/2)If = 
2 (and a1, a2 real), Trace(Dρ) = N2a1 a2 a1 

QUANTUM BEAT! 100% modulation! Either 2N2∣a1∣
2 at t = 0 or 0 at t = 0. 

6
modified 8/13/20 1:33 PM 



	 

		

 

		 

    

 
 

	 
 

 
   

 
  

   
 

⎪

5.73 Lecture #19 19 - 7 
So we see that the same Ψ(x,t) or �(t) can look simple or complicated depending on 
the nature of the measurement operator! The measurement operator is designed to 
be sensitive (can detect or “destroy” a particular coherence) only to specific 
coherences (i.e. locations in �) which oscillate at ωij. THIS IS THE REASON WHY 
WE CAN SEPARATE PREPARATION AND OBSERVATION SO CLEANLY. 

Time evolution of ρ  and A nm 

Start with the time-dependent Schrödinger equation: 

∂⎧H Ψ = i! Ψ
∂Ψ ⎪ ∂tHΨ = i! ⎨ ∂∂t ⎪ Hermitian conjugate.Ψ H = −i! Ψ⎪ ∂t⎩ 

−iEnt !for time-independent H we know Ψ( )t = ∑a ψ en n 
n 

1. ρ(t) 

ρ(t) = Ψ(t) Ψ(t) 
2 

a time independentρ nn(t) = n Ψ(t) Ψ(t ) n = a n “population” in state n. 

* − i E( n −E )t ! * − iω tρ (t) = a a e = a a e nm 

nm n m 
m

n m a “coherence” which 
oscillates at ωnm 

2. 〈Α〉t (eigenstate energy 
differences /!)∂ΨRecall i! = HΨ

∂t 
⎤ ⎤∂ ⎡ ∂ ∂A ⎡ ∂

A = Ψ Ψ + Ψ Ψ + Ψ A Ψ⎥ A⎢ ⎢ ⎥∂t ∂t ∂t ∂t⎣ ⎦ ⎣ ⎦ 
⎤ ⎤⎡−1 ∂A ⎡ 1 = Ψ H⎥ A Ψ + + Ψ A H Ψ⎢ ⎢ ⎥i! ∂t i!⎣ ⎦ ⎣ ⎦ 

i ∂A Heisenberg Equation= ⎡⎣H,A ⎤⎦ + of Motion! ∂t 

Note that nothing has been assumed here about the time-dependence of H. This 
is a simple prescription for calculating the motion of 〈A〉. One observable 
quantity. 
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5.73 Lecture #19 19 - 8 
If A commutes with H (regardless of whether H is time-dependent), there is 
no dynamics as far as observable A is concerned. However, if A does not 
commute with H, there can be dynamics of 〈A〉 even if both A and H are 
time-independent. 

Similarly, can derive i! ∂ρ = [H(t ),ρ],  which describes evolution of ρ under H(t). 
∂t This is a matrix equation. 

It specifies the time
If H is dependence of each
time 

element of ρ. Usually hasdependent 
the form of many coupled 
first-order differentialSummarize 
equations. 

〈A〉 = Tr(ρA) = Tr(Aρ) 

info about quantity info about state on which 
being measured measurement is to be made 

∂ρi! = ⎡⎣H,ρ⎤⎦∂t 
time state 

evolution 

initial state : ρ ⎫
⎪ each expressed independently intime evolution of ρ: H ⎬ the form of matrices which can be 

observable quantity : A⎭⎪ easily read (or designed!). 

NMR pulse gymnastics 

statistical mixture states - use the same machinery BUT add the 
independent ρk matrices with weights pk that correspond to their 
fractional populations [populations have no phase]. 

ρ is Hermitian so it can be diagonalized by T†ρT = ρ! . However, if � 
is time-dependent, T would have to be time-dependent. This 
transformation gives a representation without any coherences in ρ! , 
even if we started with a coherent superposition state. No problem, 
because this transformation will undiagonalize H, thereby 
reintroducing time dependences. 
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