Density Matrices I

(See CTDL pp. 252-263, 295-307**, 153-163, 199-202, 290-294)
Last time: Variational Method
$\left[\begin{array}{rl}\text { Linear variation: } 0 & =|\mathbf{H}-\varepsilon \mathbf{S}| \Rightarrow 0=|\tilde{\tilde{H}}-\varepsilon \mathbf{1}| \\ \psi & =\sum_{n} c_{n} \phi_{n} \frac{d \varepsilon}{d c_{n}}=0\end{array}\right.$
[Variational method vs. perturbation theory]

TODAY

ψ phase ambiguity - but for every observable each state always appears as a bra and a ket.
What is needed to encode motion in the probability density? A superposition of eigenstates belonging to several different values of E.
Coherent superposition vs. statistical mixture: think about polarized light.
$\rho \quad$ no phase ambiguity in density matrix, $|\psi\rangle\langle\psi|$, an $\mathrm{N} \times \mathrm{N}$ matrix * "coherences" in off-diagonal position

* "populations" along diagonal
$\langle\mathbf{A}\rangle=\operatorname{Tr}(\boldsymbol{\rho} \mathbf{A})=\operatorname{Tr}(\mathbf{A} \boldsymbol{\rho})$
Quantum Beats
prepared state $\rightarrow \rho$
detection $\rightarrow \mathbf{D}$ (detect or destroy coherences)
$\left\{\begin{array}{l}\boldsymbol{\rho (t)} \\ {\left[\begin{array}{l}\langle\mathbf{A}\rangle_{t}\end{array} \text { equations of motion }\right.} \\ \frac{d}{d t}\langle\mathbf{A}\rangle=\frac{i}{\hbar}\langle[\mathbf{H}, \mathbf{A}]\rangle+\left\langle\frac{\partial \mathbf{A}}{\partial t}\right\rangle \quad \begin{array}{l}\text { expectation value } \\ \text { each element of } \boldsymbol{\rho} \text { encodes important information } \\ i \hbar \frac{d \rho}{d t}=[\mathbf{H}(t), \boldsymbol{\rho}] \quad \begin{array}{l}\text { * state: } \quad \mathbf{\rho} \\ \text { * evolution: } \mathbf{H} \\ \\ \text { * detection: } \mathbf{D}\end{array}\end{array} \text { l}\end{array}\right.$

Let us define a quantity called "Density Matrix"

$$
\rho \equiv|\psi\rangle\langle\psi|
$$

ψ can be any sort of QM wavefunction

* eigenstate of \mathbf{H}
* coherent superposition of several eigenstates of \mathbf{H}

However, ρ can represent a statistical (i.e. equilibrium) mixture of states!

$$
\begin{aligned}
& \boldsymbol{\rho} \equiv \sum_{k} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|=\sum_{k} p_{{ }_{k}} \boldsymbol{\rho}_{k} \\
& \sum p_{k}=1
\end{aligned} \quad \begin{aligned}
& \text { probability of each contributing term to } \boldsymbol{\rho}
\end{aligned}
$$

Example

* one beam of linearly polarized light, with its polarization axis at 45° (ε-field)

$$
\hat{\mathrm{e}}=2^{-1 / 2}\left(\hat{\mathrm{e}}_{\mathrm{x}}+\hat{\mathrm{e}}_{\mathrm{y}}\right)
$$

* two superimposed beams of linearly polarized light, 50% along $\hat{\mathrm{e}}_{\mathrm{x}}$, 50% along \hat{e}_{y}. Call this a statistical mixture state.

These 2 cases seem to be identical if you make 2 measurements with analyzer polarizers along $\hat{\mathrm{e}}_{\mathrm{x}}$ then $\hat{\mathrm{e}}_{\mathrm{y}}$. But the 2 cases are different with respect to 2 measurements with analyzer polarizers along $2^{-1 / 2}\left(\hat{e}_{x}+\hat{e}_{y}\right)$ and then along $2^{-1 / 2}\left(\hat{\mathrm{e}}_{\mathrm{x}}-\hat{\mathrm{e}}_{\mathrm{y}}\right)$.
In the statistical mixture, it does not matter how the analyzer is oriented.

What are the properties of ρ ?

1. $\boldsymbol{\rho}$ for a pure state is Hermitian with positive elements along the diagonal and other elements off-diagonal. $\rho \equiv|\psi\rangle\langle\psi|$ so evaluate matrix elements of ρ

$$
\begin{aligned}
& \rho_{n m}=\langle n \mid \psi\rangle\langle\psi \mid m\rangle \\
& |\psi\rangle=\sum c_{n}|n\rangle \begin{array}{l}
\text { can expand }|\psi\rangle \\
\text { in any basis set, } \\
\text { but } \mathbf{H} \text { eigenbasis }
\end{array} \\
& \rho_{n m}=c_{n} c_{m}^{*} \\
& \operatorname{but}\left(\rho^{\dagger}\right)_{n m}=\rho_{m n}^{*}=[\langle m \mid \psi\rangle\langle\psi \mid n\rangle]^{*} \\
& =\langle\psi \mid m\rangle\langle n \mid \psi\rangle=\langle n \mid \psi\rangle\langle\psi \mid m\rangle=\rho_{n m} \\
& \therefore \rho^{\dagger}=\rho \\
& \therefore \rho \text { passes the Hermiticity test that all } \\
& \text { observable quantities must pass! } \\
& \text { So if } \rho \text { is observable, what does it tell us? } \\
& \rho_{n n}=\langle n \mid \psi\rangle\langle\psi \mid n\rangle=c_{n} c_{n}^{*}=\left|c_{n}\right|^{2} \geq 0 \\
& \text { positive along diagonal }
\end{aligned}
$$

2. $\underline{2 \times 2 \text { Example }}$

Coherent Superposition vs. Statistical Mixture

$|\psi\rangle=2^{-1 / 2}\binom{1}{ \pm 1}$ a coherent superposition state
$\rho_{c s}=\frac{1}{2}\binom{1}{ \pm 1}\left(\begin{array}{cc}1 & \pm 1\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}1 & \pm 1 \\ \pm 1 & 1\end{array}\right)$
Trace $\rho=1$

$$
\begin{aligned}
& \rho^{2}=\frac{1}{4}\left(\begin{array}{cc}
2 & \pm 2 \\
\pm 2 & 2
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
1 & \pm 1 \\
\pm 1 & 1
\end{array}\right) \\
& \rho^{2}=\rho
\end{aligned}
$$

Now consider a statistical mixture state.

$$
\begin{aligned}
\rho_{\mathrm{sm}} & =\frac{1}{2}\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right)+\frac{1}{2}\binom{0}{1}\left(\begin{array}{ll}
0 & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { trace } \rho=1
\end{aligned}
$$

The difference is in the off-diagonal positions of ρ

diagonal elements \rightarrow "populations" (statistical mixture states have off-diagonal elements \rightarrow "coherences" strictly diagonal ρ)

Expectation values of $\hat{\mathbf{A}}$ in terms of ρ

$$
\begin{aligned}
&\langle\mathbf{A}\rangle=\langle\psi| \mathbf{A}|\psi\rangle=\sum_{j, k}\langle\psi \mid k\rangle\langle k| \mathbf{A}|j\rangle\langle j \mid \psi\rangle \begin{array}{l}
\text { these are three simple } \\
\text { numbers and can be } \\
\text { rearranged in any order. }
\end{array} \\
&=\sum_{j, k}\langle j \mid \psi\rangle\langle\psi \mid k\rangle \mathbf{A}_{k j} \\
&=\sum_{\rho_{j k}}(\mathbf{\rho A})_{j j} \equiv \operatorname{Trace}(\mathbf{\rho A}) \begin{array}{l}
\text { a fantastic labor } \\
\begin{array}{l}
\text { saving and insight } \\
\text { generating result! }
\end{array}
\end{array} \\
&\langle\mathbf{A}\rangle=j \operatorname{Trace}(\mathbf{\rho A})!
\end{aligned}
$$

$\left[\right.$ Could have arranged the factors $\left.\sum_{j, k} \mathbf{A}_{k j}\langle j \mid \psi\rangle\langle\psi \mid k\rangle=\sum_{k}(\mathbf{A} \rho)_{k k}=\operatorname{Trace}(\mathbf{A} \rho)\right]$
$\langle\mathbf{A}\rangle=\operatorname{Trace}(\mathbf{A} \boldsymbol{\rho})=\operatorname{Trace}(\boldsymbol{\rho} \mathbf{A})$
So ρ describes the state of system, A describes a measurement to be made on the system
simple prescription for calculating $\langle\mathbf{A}\rangle$
The separation between initial preparation, evolution, and measurement of a specific observable becomes very convenient and instructive.

Example: Quantum Beats

Preparation, evolution, detection
magically prepare some coherent superposition state $\Psi(\mathrm{t})$

$$
\begin{array}{lc}
\Psi(t)=N \sum_{\substack{n \\
\begin{array}{c}
\text { Several eigenstates of } \mathrm{H.} \\
\text { Evolve freely without } \\
\text { any time-dependent } \\
\text { intervention }
\end{array} \\
a_{n} \Psi_{n} e^{-i E_{n} t / \hbar}}}^{\rho(t)=|\Psi(t)\rangle\langle\Psi(t)|} & \left.\sum_{n}\left|a_{n}\right|^{2}\right]^{-1 / 2} \\
&
\end{array}
$$

Case (1): Detection: only one of the eigenstates, ψ_{1}, in the superposition is capable of giving fluorescence that our detector can "see". (Build a detector matrix out of the same form as the selected bright state in $\boldsymbol{\rho}$.)
Thus $\mathbf{D}=\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|=\left(\begin{array}{ccc}1 & 0 & \cdots \\ 0 & 0 & 0 \\ \vdots & 0 & 0\end{array}\right)$

a projection operator

 (designed to project out only the $\left|\psi_{1}\right\rangle$ part of the state vector or the ρ_{11} part of $\boldsymbol{\rho}$.$$
\boldsymbol{\rho}=N^{2}\left(\begin{array}{cccc}
\left|a_{1}\right|^{2} & a_{1} a_{2}^{*} e^{-i\left(E_{1}-E_{2}\right) t / \hbar} & & \cdots \\
& \left|a_{2}\right|^{2} & & \\
& & \left|a_{3}\right|^{2} & \\
& & & \ddots
\end{array}\right)
$$

$$
\rho_{12}=\langle 1 \mid \Psi\rangle\langle\Psi \mid 2\rangle
$$

$$
\rho_{12}=N^{2} a_{1} e^{-i E_{1} t / \hbar} a_{2}^{*} e^{+i E_{2} t / \hbar}
$$

$$
\langle\mathbf{D}\rangle_{\mathrm{t}}=\operatorname{Trace}(\mathbf{D} \boldsymbol{\rho})=N^{2} \operatorname{Trace}
$$

$$
\left.\begin{array}{cccc}
\left|\mathrm{a}_{1}\right|^{2} & \mathrm{a}_{1} \mathrm{a}_{2}^{*} \mathrm{e}^{-\mathrm{i} \omega_{12} \mathrm{t}} & \text { stuff } & \ldots \\
0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right)
$$

$$
=\mathrm{N}^{2}\left|\mathrm{a}_{1}\right|^{2}
$$

no time dependence!

You do not need to work out the full $\mathbf{D} \boldsymbol{\rho}$ matrix product!
case (2): a particular linear combination of eigenstates is bright: the initial (i.e. at $\mathrm{t}=0)$ state $2^{-1 / 2}\left(\psi_{1}+\psi_{2}\right)$ has $\langle\mathbf{D}\rangle=1$.

$$
\begin{aligned}
\mathbf{D} & =\frac{1}{2}\left(\left|\psi_{1}\right\rangle+\left|\psi_{2}\right\rangle\right)\left(\left\langle\psi_{1}\right|+\left\langle\psi_{2}\right|\right) \\
& =\frac{1}{2}\left[\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|+\left|\psi_{1}\right\rangle\left\langle\psi_{2}\right|+\left|\psi_{2}\right\rangle\left\langle\psi_{1}\right|\right]
\end{aligned}
$$

$$
=\frac{1}{2}\left[\left(\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\vdots & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\vdots & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
0 & 1 & 0 & \cdots \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\vdots & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & 0 & \cdots \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\vdots & 0 & 0 & 0
\end{array}\right)\right]
$$

$$
\mathbf{D}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 0 & \cdots \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\vdots & 0 & 0 & 0
\end{array}\right)
$$

[if the bright state had been $2^{-1 / 2}\left(\psi_{1}-\psi_{2}\right)$, then $\left.\mathbf{D}=\frac{1}{2}\left(\begin{array}{cccc}1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)\right]$
$\operatorname{Trace}(\mathbf{D} \rho)=\frac{1}{2} \mathrm{~N}^{2}$ Trace $\quad \begin{aligned} & \text { why do we need to look at }\end{aligned}$ only the 1,2 block of $\boldsymbol{\rho}$

$$
\begin{aligned}
& (\mathbf{D} \boldsymbol{\rho})_{11}=\frac{1}{2} N^{2}\left[\left|a_{1}\right|^{2}+a_{1}^{*} a_{2} e^{+i\left(E_{1}-E_{2}\right) t / \hbar}\right] \\
& (\mathbf{D} \boldsymbol{\rho})_{22}=\frac{1}{2} N^{2}\left[\left|a_{2}\right|^{2}+a_{1} a_{2}^{*} e^{-i\left(E_{1}-E_{2}\right) t / \hbar}\right]
\end{aligned}
$$

The 1,2 block is the only part of \mathbf{D} that picks out something that can

$$
(\mathbf{D} \boldsymbol{\rho})_{22}=\frac{1}{2} N^{2}\left[\left|a_{2}\right|^{2}+a_{1} a_{2}^{*} e^{-i\left(E_{1}-E_{2}\right) t / \hbar}\right] \quad \begin{aligned}
& \text { appear along the diagonal } \\
& \text { of } \mathbf{D} \boldsymbol{\rho}
\end{aligned}
$$

$\operatorname{Trace}(\mathbf{D} \boldsymbol{\rho})=\frac{1}{2} N^{2}\left[\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+2 \operatorname{Re}\left[a_{1}^{*} a_{2} e_{\uparrow^{+i \omega_{12} t}}\right]\right]$
beat note at ω_{12}
[if the bright state had been $2^{-1 / 2}\left(\psi_{1}-\psi_{2}\right)$, then $\operatorname{Tr}(\mathbf{D} \rho)$ would be the same except for $-2 \operatorname{Re}[$]]

If $\left|a_{1}\right|^{2}=\left|a_{2}\right|^{2}\left(\right.$ and a_{1}, a_{2} real $), \operatorname{Trace}(\mathbf{D} \rho)=\mathrm{N}^{2}\left|\mathrm{a}_{1}\right|^{2}\left[1 \pm \cos \omega_{12} t\right] \quad\left(\mathrm{N}^{2}=1 / 2\right)$
QUANTUM BEAT! 100% modulation! Either $2 \mathrm{~N}^{2}\left|a_{1}\right|^{2}$ at $\mathrm{t}=0$ or 0 at $\mathrm{t}=0$.

So we see that the same $\Psi(\mathrm{x}, \mathrm{t})$ or $\boldsymbol{\rho}(\mathrm{t})$ can look simple or complicated depending on the nature of the measurement operator! The measurement operator is designed to be sensitive (can detect or "destroy" a particular coherence) only to specific coherences (i.e. locations in \boldsymbol{p}) which oscillate at ω_{ij}. THIS IS THE REASON WHY WE CAN SEPARATE PREPARATION AND OBSERVATION SO CLEANLY.

Time evolution of $\rho_{n m}$ and $\langle\mathbf{A}\rangle$
Start with the time-dependent Schrödinger equation:

$$
\mathbf{H} \Psi=i \hbar \frac{\partial \Psi}{\partial t}\left\{\begin{array}{l}
\mathbf{H}|\Psi\rangle=i \hbar \frac{\partial}{\partial t}|\Psi\rangle \\
\langle\Psi| \mathbf{H}=-i \hbar \frac{\partial}{\partial t}\langle\Psi| \quad \text { Hermitian conjugate. }
\end{array}\right.
$$

for time-independent \mathbf{H} we know $\Psi(t)=\sum_{n} a_{n} \psi_{n} e^{-i E_{n} t / \hbar}$

1. $\rho(\mathrm{t})$

$$
\begin{aligned}
& \rho(t)=|\Psi(t)\rangle\langle\Psi(t)| \\
& \rho_{n n}(t)=\langle n \mid \Psi(t)\rangle\langle\Psi(t) \mid n\rangle=\left|a_{n}\right|^{2} \quad \\
& \quad \begin{array}{l}
\text { a time independent }
\end{array} \\
& \text { "population" in state } n .
\end{aligned}
$$

$$
\rho_{n m}(t)=a_{n} a_{m}^{*} e^{-i\left(E_{n}-E_{m}\right) t / \hbar}=a_{n} a_{m}^{*} e^{-i \omega_{n m} t}
$$

2. $\langle\mathbf{A}\rangle_{\mathrm{t}}$
a "coherence" which oscillates at ω_{nm}

Recall $i \hbar \frac{\partial \Psi}{\partial t}=\mathbf{H} \Psi$ (eigenstate energy differences $/ \hbar$)

$$
\begin{aligned}
\frac{\partial}{\partial t}\langle\mathbf{A}\rangle & =\left[\frac{\partial}{\partial t}\langle\Psi|\right] \mathbf{A}|\Psi\rangle+\langle\Psi| \frac{\partial \mathbf{A}}{\partial t}|\Psi\rangle+\langle\Psi| \mathbf{A}\left[\frac{\partial}{\partial t}|\Psi\rangle\right] \\
& =\left[\frac{-1}{i \hbar}\langle\Psi| \mathbf{H}\right] \mathbf{A}|\Psi\rangle+\left\langle\frac{\partial \mathbf{A}}{\partial t}\right\rangle+\langle\Psi| \mathbf{A}\left[\frac{1}{i \hbar} \mathbf{H}|\Psi\rangle\right] \\
& =\frac{i}{\hbar}\langle[\mathbf{H}, \mathbf{A}]\rangle+\left\langle\frac{\partial \mathbf{A}}{\partial t}\right\rangle<\begin{array}{c}
\text { Heisenberg Equation } \\
\text { of Motion }
\end{array}
\end{aligned}
$$

Note that nothing has been assumed here about the time-dependence of \mathbf{H}. This is a simple prescription for calculating the motion of $\langle A\rangle$. One observable quantity.

If \mathbf{A} commutes with \mathbf{H} (regardless of whether \mathbf{H} is time-dependent), there is no dynamics as far as observable \mathbf{A} is concerned. However, if \mathbf{A} does not commute with \mathbf{H}, there can be dynamics of $\langle\mathbf{A}\rangle$ even if both \mathbf{A} and \mathbf{H} are $\operatorname{time}_{\mathbf{r}}$-independent.
Similarly, can derive $\mathrm{i} \hbar \frac{\partial \rho}{\partial t}=[\underset{\boldsymbol{\Lambda}}{\mathbf{H}}(t), \rho]$, which describes evolution of ρ under $\mathbf{H}(\mathrm{t})$. This is a matrix equation. It specifies the time dependence of each element of $\boldsymbol{\rho}$. Usually has the form of many coupled first-order differential equations.

Summarize

$\left.\begin{array}{cc} \text { on of } \rho: & \mathbf{H} \\ \text { quantity : } & \mathbf{A} \end{array}\right\}$	each expressed independently in the form of matrices which can be easily read (or designed!).

NMR pulse gymnastics
statistical mixture states - use the same machinery BUT add the independent ρ_{k} matrices with weights p_{k} that correspond to their fractional populations [populations have no phase].
$\boldsymbol{\rho}$ is Hermitian so it can be diagonalized by $\mathbf{T}^{\dagger} \boldsymbol{\rho} \mathbf{T}=\tilde{\rho}$. However, if $\boldsymbol{\rho}$ is time-dependent, \mathbf{T} would have to be time-dependent. This transformation gives a representation without any coherences in $\tilde{\rho}$, even if we started with a coherent superposition state. No problem, because this transformation will undiagonalize \mathbf{H}, thereby reintroducing time dependences.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

