5.73 Quiz 17

1.

$$\begin{split} \Psi_{v_{1}v_{2}}^{(0)} &= \phi_{v_{1}}(x_{1})\phi_{v_{2}}(x_{2}) \\ E_{v_{1}v_{2}}^{(0)} &= \hbar \big[\omega_{1}(v_{1}+1/2) + \omega_{2}(v_{2}+1/2) \big] \\ \mathbf{H}^{(1)} &= k_{122}x_{1}x_{2}^{2} \\ \mathbf{x}_{1} &= \Big(\frac{m_{1}\omega_{1}}{2\hbar}\Big)^{1/2} \big(\mathbf{a}_{1} + \mathbf{a}_{1}^{\dagger} \big) \\ \mathbf{x}_{2} &= \Big(\frac{m_{2}\omega_{2}}{2\hbar}\Big)^{1/2} \big(\mathbf{a}_{2} + \mathbf{a}_{2}^{\dagger} \big) \end{split}$$

A. Matrix elements of $\mathbf{H}^{(0)}$ have four indices, n_1 and k_1 specify the final and initial state quantum numbers for oscillator #1, n_2 and k_2 the final and initial state quantum numbers for oscillator #2. What are the selection rules for nonzero matrix elements of $\mathbf{H}^{(0)}$?

$$n_1 - k_1 =$$

$$n_2 - k_2 =$$

B. What are the zero-order energy differences that correspond to each of the nonzero matrix elements of $\mathbf{H}_{n_1k_1n_2k_2}^{(1)}$?

$$E_{n_1n_2}^{(0)} - E_{k_1k_2}^{(0)} = \hbar \left[\omega_1() + \omega_2() \right]$$

C. Evaluate at least two of the six nonzero values of the off-diagonal elements of $\mathbf{H}^{(1)}$.

(i) e.g. $\mathbf{H}_{n_1n_1+1n_2n_2+2} = \gamma [(n_1+1)(n_2+2)(n_2+1)]^{1/2}$

(ii)
$$\mathbf{H}_{n_1n_1+1n_2n_2} = \gamma[$$
]

DO THIS ONE! (iii) $\mathbf{H}_{n_1n_1+1n_2n_2-2} = \gamma [$]

(iv)
$$\mathbf{H}_{n_1n_1-1n_2n_2+2} = \gamma[$$
]

(v)
$$\mathbf{H}_{n_1n_1-1n_2n_2} = \gamma[$$
]

(vi)
$$\mathbf{H}_{n_1n_1-1n_2n_2-2} = \gamma[$$

where
$$\gamma \equiv \left(\frac{m_1 \omega_1}{2\hbar}\right)^{1/2} \left(\frac{m_2 \omega_2}{2\hbar}\right)^1$$
.

D. The term
$$\frac{\left|\mathbf{H}_{n_{1}n_{1}+1n_{2}n_{2}-2}^{(1)}\right|^{2}}{E_{n_{1}n_{2}}^{(0)}-E_{n_{1}+1n_{2}-2}^{(0)}}$$

appears in the second-order perturbation summation for $E_{n_1n_2}^{(2)}$. Evaluate this term (based on your answers to parts B and C(iii)).

E. What happens to the term in part D if $\omega_1 = 2\omega_2$?

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.