Matrix Solution of Harmonic Oscillator

Last time:
$* \mathbf{T}^{\dagger} \mathbf{A}^{\phi} \mathbf{T}=\left(\begin{array}{ccc}a_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_{N}\end{array}\right)_{\psi} \quad$ transformation to the diagonal form of \mathbf{A}

* eigenbasis $|i\rangle=\left(\begin{array}{c}\mathrm{T}_{1 \mathrm{i}}^{\dagger} \\ \vdots \\ \mathrm{T}_{\mathrm{Ni}}^{\dagger}\end{array}\right)_{\phi} \quad i-$ th column of $\mathbf{T}^{\dagger} \quad$ eigenbasis for \mathbf{A} * matrix representation of a function of a matrix is given by $\mathbf{T f}\left(\mathbf{T}^{\dagger} \mathbf{x T}\right) \mathbf{T}^{\dagger}$

$$
\text { e.g. } f(x)=\mathbf{x}^{N}=\overbrace{\mathbf{T}\left(\mathbf{T}^{\dagger} \mathbf{x T}\right)\left(\mathbf{T}^{\dagger} \mathbf{x T}\right) \ldots . \mathbf{T}^{\dagger}=\mathbf{T}^{N} \mathbf{T}^{\dagger}=\mathbf{x}^{N} . \quad \text { diagonal terms }}
$$

* Discrete Variable Representation: Matrix representation for any 1-D problem

$$
\text { Matrix version of numerical integration - } \begin{aligned}
& \text { works even for repulsive } \mathrm{V}(\mathrm{x}) \text { via } \\
& \text { addition of an infinite well }
\end{aligned}
$$

TODAY: Harmonic Oscillator: Derive all matrix elements of $\mathbf{x}, \mathbf{p}, \mathbf{H}$ from the $[\mathbf{x}, \mathbf{p}]$ commutation rule and the definition of \mathbf{H}.

Example of how one can get matrix results entirely from commutation rule definitions (e.g. we will soon see this for an angular momentum: $\mathbf{J}^{2}, \mathbf{J}_{x}, \mathbf{J}_{y}, \mathbf{J}_{z}$, and the Wigner-Eckart Theorem)

NO WAVEFUNCTIONS, NO INTEGRALS, ALL MAGIC!
Outline of steps:

1. Assumptions $\quad * \mathbf{H}=\frac{\mathbf{p}^{2}}{2 m}+\frac{k \mathbf{x}^{2}}{2} \quad$ Specific Model

* eigen-basis exists for \mathbf{H}
* $[\hat{x}, \hat{p}]=i \hbar$ Central postulate of $\mathbf{Q M}$
* \hat{x} and $\hat{\mathrm{p}}$ are Hermitian (they have real expectation values)

2. x_{nm} and p_{nm} in terms of $\left(\mathrm{E}_{\mathrm{n}}-\mathrm{E}_{\mathrm{m}}\right)$
3. x_{nm} in terms of p_{nm}
4. Block Diagonalize $\mathbf{x}, \mathbf{p}, \mathbf{H}$ matrices (this is the most difficult step to understand)
5. Lowest quantum number must exist (call it 0) \rightarrow explicit values for
6. Recursion relationship for $\mathrm{x}_{\mathrm{nn} \pm 1}$ and $\mathrm{p}_{\mathrm{nn} \pm 1}\left(\mathrm{x}_{\mathrm{nn}+1}\right.$ from $\left.\mathrm{x}_{\mathrm{n}-1 \mathrm{n}} \ldots\right)$
7. Magnitudes and phases for $\mathrm{x}_{\mathrm{nn} \pm 1}$ and $\mathrm{p}_{\mathrm{nn} \pm 1}$
8. Possibility of noncommunicating blocks along diagonal of $\mathbf{H}, \mathbf{x}, \mathbf{p}$?

See CTDL pages 488-500 for similar treatment.
IN MORE
You will never use this methodology - only the results! ELEGANT NOTATION

Mindo y qumisi

1. recall assumptions
2. \mathbf{x} and \mathbf{p} matrix elements are derived here from Commutation Rules: x_{nm} and p_{nm} in terms of $E_{n}-E_{m}$

$$
\begin{aligned}
& {[\mathbf{x}, \mathbf{H}]=\left[\mathbf{x}, \frac{\mathbf{p}^{2}}{2 m}+\frac{1}{2} k \mathbf{x}^{2}\right] }=\frac{1}{2 m}\left[\mathbf{x}, \mathbf{p}^{2}\right]=\frac{1}{2 m}(\underset{i \hbar}{\mathbf{p}[\mathbf{x}, \mathbf{p}]}+\underset{i \hbar}{[\mathbf{x}, \mathbf{p}] \mathbf{p}})=\frac{2 i \hbar}{2 m} \mathbf{p} \\
& * *[\mathbf{x}, \mathbf{p}]=i \hbar \quad \rightarrow[\mathbf{x}, \mathrm{H}]=\frac{\mathbf{p}}{2 \mathrm{~m}} 2 i \hbar=\frac{i \hbar}{\mathrm{~m}} \mathbf{p} \\
& \mathbf{p}=\left(\frac{\mathrm{m}}{i \hbar}\right)[\mathbf{x}, \mathbf{H}]
\end{aligned}
$$

Take n, m matrix elements of both sides, insert completeness operator, $\sum_{\ell}|\ell\rangle\langle\ell|$,
between \mathbf{x} and \mathbf{H}.

$$
p_{n m}=\left(\frac{m}{i \hbar}\right) \sum_{\ell}\left(x_{n \ell} H_{\ell m}-H_{n \ell} x_{\ell m}\right) .
$$

Similarly, starting from $[\mathbf{p}, \mathbf{H}]=\left[\mathbf{p}, \frac{1}{2} k \mathbf{x}^{2}\right]=-i \hbar k \mathbf{x}$ rearrange and solve for x_{nm}

$$
x_{n m}=\frac{i}{k \hbar} \sum_{\ell}\left(p_{n \ell} H_{\ell m}-H_{n \ell} p_{\ell m}\right) .
$$

But we know that some basis set of functions (the "harmonic oscillator eigenbasis") must exist in which \mathbf{H} is diagonal. Use it implicitly: \therefore replace $\mathrm{H}_{\ell \mathrm{m}}$ by $\mathrm{E}_{\mathrm{m}} \delta_{\mathrm{m} \ell}$. This kills the sum over ℓ.

$$
\begin{aligned}
& p_{n m}=\left(\frac{m}{i h}\right)\left(x_{n m} E_{m}-E_{n} x_{n m}\right) \\
& p_{n m}=\left(\frac{m}{i \hbar}\right) x_{n m}\left(E_{m}-E_{n}\right) \quad \text { so for the special case of } n=m, p_{n n}=0
\end{aligned}
$$

(but, in addition, $p_{n n}=0$ if \mathbf{H} for the harmonic oscillator has a degenerate eigenvalue, then $p_{n m}=0$ if $\mathrm{E}_{\mathrm{n}}=\mathrm{E}_{\mathrm{m}}$)
similarly for the x_{nm} equation

$$
\begin{gathered}
x_{n m}=\frac{i}{\hbar k} p_{n m}\left(E_{m}-E_{n}\right) \\
\therefore x_{n n}=0\left(\text { and } x_{n m}=0 \text { if } E_{n}=E_{m}\right)
\end{gathered}
$$

3. solve for the non-zero $x_{n m}$ in terms of the non-zero $p_{n m}$
multiply the $x_{n m}$ equation by $p_{n m} \quad$ The LHSs of both resulting multiply the $p_{n m}$ equation by $x_{n m}$ equations are equal
equate RHSs: $\frac{\mathrm{m}}{\mathrm{i} \hbar} x_{n m}^{2}\left(E_{m}-E_{n}\right)=\frac{i}{\hbar k} p_{n m}^{2}\left(E_{m}-E_{n}\right)$

* If $E_{n}=E_{m}$ (degeneracy) - then we already know that $x_{n m}=0, p_{n m}=0$
* If $E_{n} \neq E_{m}$ then we can divide by $\left(E_{m}-E_{n}\right)$ and rearrange

$$
\begin{aligned}
& x_{n m}^{2}=-\frac{1}{k m} p_{n m}^{2} \\
& x_{n m}= \pm i(k m)^{-1 / 2} p_{n m} \\
& \\
& \text { THERE IS A PHASE } \\
& \text { AMBIGUITY HERE! }
\end{aligned}
$$

Need to find out what phase choice is consistent with other requirements

Earlier we derived $\quad p_{n m}=\frac{m}{i \hbar} x_{n m}\left(E_{m}-E_{n}\right)$
plug in new result for $x_{n m} \quad p_{n m}=\frac{m}{i \hbar}\left(\pm i(k m)^{-1 / 2}\right) p_{n m}\left(E_{m}-E_{n}\right)$

Thus either:

$$
* \quad p_{n m} \neq 0 \mathrm{AND} E_{m}-E_{n}= \pm \hbar(k / m)^{1 / 2} \equiv \pm \hbar \omega!!
$$

(Why is it OK to divide thru by $p_{n m}$?)

OR $\swarrow^{\text {when }} \mathrm{E}_{\mathrm{m}} \neq \mathrm{E}_{\mathrm{n}} \pm \hbar \omega$

* $\quad p_{n m}=0 \Rightarrow X_{n m}=0$

This is the most difficult but most crucial point in the logic.

The only non-zero off-diagonal matrix elements of \mathbf{x} and \mathbf{p} involve eigenfunctions of \mathbf{H} that have energies differing by exactly $\hbar \omega$! A "selection rule"! The only nonzero matrix elements of \mathbf{x} and \mathbf{p} are those where the indices for each non-zero $x_{n m}$ and $p_{n m}$ differ by ± 1.

Updated 8/13/20 8:23 AM
4. $\underline{\mathbf{x}, \mathbf{p}, \mathbf{H} \text { are block "diagonalized" }}$
within this set one finds all of the non-zero

In what sense? There is a set of eigenstates of \mathbf{H} that have energies that fall onto a comb of evenly spaced $E_{n}^{(1)}$ values:

$$
E_{n}^{(1)}=n(\hbar \omega)+\varepsilon_{1}
$$

But there could be another set:
Set II $\quad \mathrm{E}_{0}^{(2)}$ is lowest

$$
E_{n}^{(2)}=n(\hbar \omega)+\varepsilon_{2} \quad \text { where } \varepsilon_{2}-\varepsilon_{1} \neq n \hbar \omega \quad \mathrm{E}_{1}^{(2)}=\mathrm{E}_{0}^{(2)}+\hbar \omega
$$

But within each set, there must be a lowest energy level

Since \mathbf{x} and \mathbf{p} have nonzero elements only within communicating sets for \mathbf{H}, thus \mathbf{x}, \mathbf{p}, \mathbf{H} are block diagonalized into sets I, II, etc.

We will eventually show that all of these blocks along the diagonal are identical (and that each energy level is nondegenerate). If \mathbf{x}, \mathbf{p} are "block diagonal", then \mathbf{x}^{2}, \mathbf{p}^{2} are similarly block diagonal.
5. A lowest index must exist within each block. Call it 0 .

$$
\begin{aligned}
& {[\mathbf{x}, \mathbf{p}]=\mathrm{i} \hbar \text { is a diagonal matrix: } \mathrm{i} \hbar \mathbb{1}} \\
& \sum_{\ell}\left(x_{n \ell} p_{\ell m}-p_{n \ell} x_{\ell m}\right)=i \hbar \delta_{n m} \text { because }[\mathbf{x}, \mathbf{p}]=\mathrm{i} \hbar \mathbb{1} \\
& i \hbar=\left({\underset{(x \mathbf{p}}{ }}_{x_{n n+1}} p_{n+1 n}-p_{n n+1} x_{n+1 n}\right)+\left(x_{n n-1} p_{n-1 n}-p_{n n-1} x_{n-1 n}\right)
\end{aligned}
$$

indices mist be equal

These are the only surviving nonzero terms in the sum over ℓ. because we showed that the $\boldsymbol{x}, \boldsymbol{p}$ matrix elements are non-zero only between states with E different by $\pm \hbar \omega$. This is the basis for the indexing of the basis states within a block.

There must be a lowest E_{i} because, classically,

$$
\mathrm{E}=\mathrm{T}+\mathrm{V} \text { and } \mathrm{T} \geq 0, \mathrm{E} \geq \mathrm{V}_{\min } .
$$

Let $n=0$ be the lowest allowed index (this is an arbitrary choice of labels).

$$
p_{0,-1}=x_{0,-1}=0 \quad(-1 \text { is not an allowed index. })
$$

$$
x_{01} p_{10}-p_{01} x_{10}=i \hbar
$$

\mathbf{x}, \mathbf{p} are Hermitian $\left(\mathbf{A}=\mathbf{A}^{\dagger}\right)$ thus $x_{01} \stackrel{\dot{p}_{01}^{*}-p_{01} x_{01}^{*}=i \hbar}{ }$ used Hermiticity here
we are going to insert this into the above $x_{01} p_{10}$ equation
$\begin{array}{lll}\text { previously } & x_{n m}= \pm i(k m)^{-1 / 2} p_{n m} & \text { (note that the same symbol is used } \\ & x_{01}= \pm i(k m)^{-1 / 2} p_{01} & \text { indices) }\end{array}$
We must make phase choices so that both \mathbf{x} and \mathbf{p} are Hermitian.

Phase ambiguity: we are free to specify the absolute phase of \mathbf{x} or \mathbf{p} BUT NOT BOTH because that would affect the value of $[\mathbf{x}, \mathbf{p}]$

BY CONVENTION:
all non-zero matrix elements of \mathbf{x} are REAL
all non-zero matrix elements of \mathbf{p} are IMAGINARY
$\operatorname{try} \quad x_{01}=+i(\mathrm{~km})^{-1 / 2} p_{01}$ and eliminate p_{01} by plugging this value of x_{01} into

$$
x_{01} p_{01}^{*}-p_{01} x_{01}^{*}=i \hbar: \text { we get } i(k m)^{-1 / 2}\left|p_{01}\right|^{2}+i(k m)^{-1 / 2}\left|p_{01}\right|^{2}=i \hbar
$$

thus

$$
\begin{aligned}
& \left|x_{01}\right|^{2}=\frac{\hbar}{2}(k m)^{-1 / 2} \\
& \left|p_{01}\right|^{2}=\frac{\hbar}{2}(k m)^{+1 / 2}!!!
\end{aligned}
$$

[If we had chosen $x_{01}=-i(\mathrm{~km})^{-1 / 2} p_{01}$ we would have obtained $\underset{\geq 0}{\left|\sum_{01}\right|^{2}}=-\frac{\hbar}{2}(k m)^{1 / 2}$ which is impossible!
There are two things that must be checked for self-consistency of seemingly arbitrary phase choices at every opportunity:

* Hermiticity

Recursion Relation for $\left|x_{n, n+1}\right|^{2} \quad *|\quad|^{2} \geq \mathbf{0}$.
Start again with the general equation derived in part \#3 above using the phase choice that worked in part \#5 above
index increasing

by 1
Hermiticity of $\quad x_{n+1 n}^{*}=i(k m)^{-1 / 2} p_{n+1 n}^{*}$ \mathbf{x} and \mathbf{p}
c.c. of both sides
index decreasing by 1

$$
\therefore \quad x_{n n \pm 1}= \pm i(k m)^{-1 / 2} p_{n n \pm 1}
$$

Now the arbitrary part of the phase ambiguity in the relationship between \mathbf{x} and \mathbf{p} has been eliminated

Apply this to the general term in $[\mathbf{x}, \mathbf{p}] \Rightarrow$ requires a lot of algebra

NONLECTURE : evaluation of the four non-zero terms in $[\mathbf{x}, \mathbf{p}]=i \hbar$, given here:

$$
\begin{aligned}
& x_{n n+1} p_{n+1 n}=x_{n n+1} p_{n n+1}^{*}=x_{n n+1}\left(-\frac{(k m)^{1 / 2}}{i} x_{n n+1}^{*}\right) \\
&=\left|x_{n n+1}\right|^{2}\left(+i(k m)^{1 / 2}\right) \\
&-p_{n n+1} x_{n+1 n}=-\left(\frac{(k m)^{1 / 2}}{i} x_{n n+1}\right)\left(x_{n n+1}^{*}\right)=\left|x_{n n+1}\right|^{2}\left(+i(k m)^{1 / 2}\right) \\
& x_{n n-1} p_{n-1 n}=x_{n n-1} p_{n n-1}^{*}=x_{n n-1}\left(+\frac{(k m)^{1 / 2}}{i} x_{n n-1}^{*}\right) \\
&=\left|x_{n n-1}\right|^{2}\left(-i(k m)^{1 / 2}\right) \\
&-p_{n n-1} x_{n-1 n}=-\left(-\frac{(k m)^{1 / 2}}{i} x_{n n-1}\right)\left(x_{n n-1}^{*}\right)=\left|x_{n n-1}\right|^{2}\left(-i(k m)^{1 / 2}\right)
\end{aligned}
$$

Combine the 4 terms in $[\mathbf{x}, \mathbf{p}]=\mathrm{i} \hbar$ to get

$$
\begin{array}{ll}
i \hbar=2 i(k m)^{1 / 2}\left[\left|x_{n n+1}\right|^{2}-\left|x_{n n-1}\right|^{2}\right] & \\
\left|x_{n n+1}\right|^{2}=\frac{\hbar(k m)^{-1 / 2}}{2}+\left|x_{n n-1}\right|^{2} & \text { recursion relation } \\
\text { but }\left|x_{01}\right|^{2}=\left|x_{10}\right|^{2}=\frac{\hbar}{2}(k m)^{-1 / 2} & \text { OK to reverse in } \\
\left|x_{n+1 n}\right|^{2} \leftarrow\left|x_{n n+1}\right|^{2}
\end{array}
$$

$$
\text { OK to reverse indices in }\left|\left.\right|^{2}\right.
$$

Each step-up in quantum number produces another additive term: $\frac{\hbar}{2}(\mathrm{~km})^{-1 / 2}$
thus

$$
\begin{aligned}
& \left|x_{n n+1}\right|^{2}=(n+1) \frac{\hbar}{2}(k m)^{-1 / 2} \\
& \left|p_{n n+1}\right|^{2}=(n+1) \frac{\hbar}{2}(k m)^{+1 / 2}
\end{aligned}
$$

7. Magnitudes and Phases for $\mathrm{x}_{\mathrm{nn} \pm 1}$ and $\mathrm{p}_{\mathrm{nn} \pm 1}$

Verify phase consistency and Hermiticity for \mathbf{x} and \mathbf{p}.
In part \#3 we derived $X_{n n \pm 1}= \pm i(\mathrm{~km})^{-1 / 2} p_{n n \pm 1}$
one self-consistent set is

x real	$\bar{X}_{n n+1}=+(n+1)^{1 / 2}\left(\frac{\hbar}{2(\mathrm{~km})^{1 / 2}}\right)^{1 / 2}=+x_{n+1 n}$
	$X_{n n-1}=+(n)^{1 / 2}\left(\frac{\hbar}{2(\mathrm{~km})^{1 / 2}}\right)^{1 / 2}=+x_{n n-1}$
AND p imaginary with sign flip for up vs. down	$\left[\begin{array}{l} p_{n n+1}=-i(n+1)^{1 / 2}\left(\frac{\hbar(\mathrm{~km})^{1 / 2}}{2}\right)^{1 / 2}=-p_{n+1 n} \\ p_{n n-1}=+i(n)^{1 / 2}\left(\frac{\hbar(\mathrm{~km})^{1 / 2}}{2}\right)^{1 / 2}=-p_{n-1 n} \end{array}\right.$

Note that nonzero matrix elements of x and p are always \propto to the SQRT of the larger quantum number.
This is the usual phase convention: $\mathrm{x}_{\mathrm{nn} \pm 1}$ real and positive, $\mathrm{p}_{\mathrm{nn}+1}=-\mathrm{p}_{\mathrm{n}+1 \mathrm{n}}$ imaginary. Must be careful about phase choices because in the matrix form of QM one never really looks at wavefunctions, operators, or integrals
8. Possible existence of noncommunicating blocks along the diagonal of $\mathbf{H}, \mathbf{x}, \mathbf{p}$

You show that $H_{n m}=(n+1 / 2) \hbar\left(\frac{k}{m}\right)^{1 / 2} \delta_{n m}$ from definition of \mathbf{H}
(Note that \mathbf{x}^{2} and \mathbf{p}^{2} have nonzero $\Delta \mathrm{n}= \pm 2$ elements but
$\left(\frac{1}{2} k \mathbf{x}^{2}+\frac{\mathbf{p}^{2}}{2 m}\right.$ has cancelling contributions in the $\Delta \mathrm{n}=+2$ and $\Delta \mathrm{n}=-2$ locations $)$
This result implies

* all of the possibly independent blocks in $\mathbf{x}, \mathbf{p}, \mathbf{H}$ are identical because they all start from the same lowest energy
* $E^{(i)}{ }_{\mathrm{n}}=\mathrm{n} \hbar \omega+\varepsilon_{i}$ where $\varepsilon_{i}=(1 / 2) \hbar \omega$ for all i
* degeneracy of all E_{n} ? All E_{n} must have the same degeneracy, but I can't prove that this degeneracy is 1. Are there parallel non-communicating universes?

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

