Matrix Solution of Harmonic Oscillator

Last time:

$$* \mathbf{T}^{\dagger} \mathbf{A}^{\phi} \mathbf{T} = \begin{pmatrix} a_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_N \end{pmatrix}_{\Psi}$$
 transformation to the diagonal form of \mathbf{A}

* eigenbasis
$$|i\rangle = \begin{pmatrix} T_{\mathbf{li}}^{\dagger} \\ \vdots \\ T_{\mathbf{Ni}}^{\dagger} \end{pmatrix}_{\Phi}$$
 $i-th$ column of \mathbf{T}^{\dagger} eigenbasis for \mathbf{A}

* matrix representation of a function of a matrix is given by $\mathbf{T}f(\mathbf{T}^{\dagger}\mathbf{x}\mathbf{T})\mathbf{T}^{\dagger}$

e.g.
$$f(x) = \mathbf{x}^N = \mathbf{T}(\mathbf{T}^{\dagger}\mathbf{x}\mathbf{T})(\mathbf{T}^{\dagger}\mathbf{x}\mathbf{T})...\mathbf{T}^{\dagger} = \mathbf{T}\tilde{\mathbf{x}}^N\mathbf{T}^{\dagger} = \mathbf{x}^N$$

* Discrete Variable Representation: Matrix representation for any 1-D problem

Matrix version of numerical integration — works even for repulsive V(x) via addition of an infinite well

TODAY: Harmonic Oscillator: Derive all matrix elements of \mathbf{x} , \mathbf{p} , \mathbf{H} from the $[\mathbf{x},\mathbf{p}]$ commutation rule and the definition of \mathbf{H} .

Example of how one can get matrix results entirely from commutation rule definitions (e.g. we will soon see this for an angular momentum: J^2 , J_x , J_y , J_z , and the Wigner-Eckart Theorem)

NO WAVEFUNCTIONS, NO INTEGRALS, ALL MAGIC!

Outline of steps:

1. Assumptions

*
$$\mathbf{H} = \frac{\mathbf{p}^2}{2m} + \frac{k\mathbf{x}^2}{2}$$
 Specific Model

*eigen-basis exists for H

*
$$[\hat{x},\hat{p}] = i\hbar$$
 Central postulate of QM

* \hat{x} and \hat{p} are Hermitian (they have real expectation values)

- 2. x_{nm} and p_{nm} in terms of $(E_{n}\!\!-\!\!E_{m}\!)$
- 3. x_{nm} in terms of p_{nm}
- 4. Block Diagonalize x, p, H matrices (this is the most difficult step to understand)
- 5. Lowest quantum number must exist (call it 0) \rightarrow explicit values for

$$|x_{01}|^2$$
 and $|p_{01}|^2$

- 6. Recursion relationship for $x_{nn\pm 1}$ and $p_{nn\pm 1}\left(x_{nn+1} \text{ from } x_{n-1n}...\right)$
- 7. Magnitudes and phases for $x_{nn\pm 1}$ and $p_{nn\pm 1}$
- 8. Possibility of noncommunicating blocks along diagonal of H, x, p?

1

5.73 Lecture #12

12 - 2

See CTDL pages 488-500 for similar treatment. IN MORE **ELEGANT NOTATION** You will never use this methodology - only the results!

Emjoy this!

- 1. recall assumptions
- 2. $\overline{{\bm x}}$ and ${\bm p}$ matrix elements are derived here from Commutation Rules: x_{nm} and p_{nm} in terms of $E_n - E_m$

$$[\mathbf{x},\mathbf{H}] = \left[\mathbf{x}, \frac{\mathbf{p}^2}{2m} + \frac{1}{2}k\mathbf{x}^2\right] = \frac{1}{2m}\left[\mathbf{x}, \mathbf{p}^2\right] = \frac{1}{2m}\left[\mathbf{p}\left[\mathbf{x}, \mathbf{p}\right] + \left[\mathbf{x}, \mathbf{p}\right]\mathbf{p}\right] = \frac{2i\hbar}{2m}\mathbf{p}$$

$$** \left[\mathbf{x}, \mathbf{p}\right] = i\hbar \qquad \rightarrow \left[\mathbf{x}, \mathbf{H}\right] = \frac{\mathbf{p}}{2m} 2i\hbar = \frac{i\hbar}{m}\mathbf{p}$$

$$\mathbf{p} = \left(\frac{m}{i\hbar}\right)[\mathbf{x}, \mathbf{H}]$$

Take n,m matrix elements of both sides, insert completeness operator, $\sum |\ell\rangle\langle\ell|$, between x and H.

$$p_{nm} = \left(\frac{m}{i\hbar}\right) \sum_{\ell} \left(x_{n\ell} H_{\ell m} - H_{n\ell} x_{\ell m}\right).$$

Similarly, starting from $[\mathbf{p},\mathbf{H}] = \left[\mathbf{p},\frac{1}{2}k\mathbf{x}^2\right] = -i\hbar k\mathbf{x}$

rearrange and solve for \boldsymbol{x}_{nm}

$$x_{nm} = \frac{i}{k\hbar} \sum_{\ell} \Big(p_{n\ell} H_{\ell m} - H_{n\ell} p_{\ell m} \Big).$$

But we know that some basis set of functions (the "harmonic oscillator eigenbasis") must exist in which H is diagonal. Use it implicitly: \therefore replace $H_{\ell m}$ by $E_m \delta_{m\ell}$. This kills the sum over ℓ .

$$p_{nm} = \left(\frac{m}{ih}\right) \left(x_{nm}E_m - E_n x_{nm}\right)$$

$$p_{nm} = \left(\frac{m}{i\hbar}\right) x_{nm} \left(E_m - E_n\right)$$

 $p_{nm} = \left(\frac{m}{i\hbar}\right) x_{nm} \left(E_m - E_n\right)$ so for the special case of n = m, $p_{nn} = 0$

(but, in addition, $p_{nn} = 0$ if **H** for the harmonic oscillator has a <u>degenerate</u> eigenvalue, then $p_{nm} = 0$ if $E_n = E_m$)

similarly for the x_{nm} equation

$$x_{nm} = \frac{i}{\hbar k} p_{nm} \left(E_m - E_n \right)$$

$$\therefore x_{nn} = 0 \text{ (and } x_{nm} = 0 \text{ if } E_n = E_m)$$

3. solve for the non-zero x_{nm} in terms of the non-zero p_{nm}

multiply the x_{nm} equation by p_{nm} The LHSs of both resulting equations are equal

equate RHSs:
$$\frac{m}{i\hbar} x_{nm}^2 (E_m - E_n) = \frac{i}{\hbar k} p_{nm}^2 (E_m - E_n)$$

- * If $E_n = E_m$ (degeneracy) then we already know that $x_{nm} = 0$, $p_{nm} = 0$
- * If $E_n \neq E_m$ then we can divide by $(E_m E_n)$ and rearrange

$$x_{nm}^2 = -\frac{1}{km} p_{nm}^2$$

 $x_{nm} = \pm i(km)^{-1/2} p_{nm}$

THERE IS A PHASE AMBIGUITY HERE!

Need to find out what phase choice is consistent with other requirements

*

Earlier we derived
$$p_{nm} = \frac{m}{i\hbar} x_{nm} (E_m - E_n)$$

plug in new result for x_{nm}

$$p_{nm} = \frac{m}{i\hbar} \left(\pm i \left(km \right)^{-1/2} \right) p_{nm} \left(E_m - E_n \right)$$

Thus either:

*
$$p_{nm} \neq 0 \text{ AND } E_m - E_n = \pm \hbar (k/m)^{1/2} \equiv \pm \hbar \omega!!$$

(Why is it OK to divide thru by p_{nm} ?)

$$OR$$
 when $E_m \neq E_n \pm \hbar \omega$

$$p_{nm} = 0 \Rightarrow x_{nm} = 0$$
 This is the most difficult but most crucial point in the logic

most crucial point in the logic.

The *only* non-zero off-diagonal matrix elements of \mathbf{x} and \mathbf{p} involve eigenfunctions of **H** that have energies differing by exactly $\hbar\omega!$ A "selection rule"! The only nonzero matrix elements of x and p are those where the indices for each non-zero x_{nm} and p_{nm} differ by ± 1 .

4. x, p, H are block "diagonalized" (

within this set one finds all of the non-zero elements of \mathbf{x} and \mathbf{p} .

In what sense? There is a set of eigenstates of H that have energies that fall onto a comb of evenly spaced $\,E_{\scriptscriptstyle n}^{(1)}\,$ values:

$$E_n^{(1)} = n(\hbar\omega) + \varepsilon_1$$

But there could be another set:

ere could be another set: Set II
$$E_0^{(2)}$$
 is lowest $E_n^{(2)} = n(\hbar\omega) + \varepsilon_2$ where $\varepsilon_2 - \varepsilon_1 \neq n\hbar\omega$ $E_1^{(2)} = E_0^{(2)} + \hbar\omega$ for all n

But within each set, there must be a lowest energy level

Set I
$$E_0^{(1)}$$
 is lowest
$$E_1^{(1)} = E_0^{(1)} + \hbar \omega$$
 etc.
$$E_0^{(2)}$$
 is lowest
$$E_1^{(2)} = E_0^{(2)} + \hbar \omega$$
 etc.
$$E_1^{(2)} = E_0^{(2)} + \hbar \omega$$
 etc.
$$E_0^{(1)} = E_0^{(2)} + \hbar \omega$$
 etc.
$$E_0^{(1)} = E_0^{(2)} + \hbar \omega$$
 etc.
$$E_0^{(1)} = E_0^{(2)} + \hbar \omega$$

Since **x** and **p** have nonzero elements only within communicating sets for **H**, thus **x**, **p**, **H** are block diagonalized into sets I, II, etc.

$$\mathbf{H,x,p} = \begin{pmatrix} \mathbf{I} & 0 & 0 & 0 \\ 0 & \mathbf{II} & 0 & 0 \\ 0 & 0 & \mathbf{III} & 0 \\ 0 & 0 & 0 & \ddots \end{pmatrix}$$

We will eventually show that all of these blocks along the diagonal are identical (and that each energy level is nondegenerate). If \mathbf{x} , \mathbf{p} are "block diagonal", then \mathbf{x}^2 , \mathbf{p}^2 are similarly block diagonal.

5. A lowest index must exist within each block. Call it 0.

 $[\mathbf{x},\mathbf{p}] = i\hbar$ is a diagonal matrix: $i\hbar \mathbb{1}$

$$\sum_{\ell} \left(x_{n\ell} p_{\ell m} - p_{n\ell} x_{\ell m} \right) = i\hbar \delta_{nm} \text{ because } [\mathbf{x}, \mathbf{p}] = i\hbar 1$$

$$i\hbar = \left(x_{nn+1} p_{n+1n} - p_{nn+1} x_{n+1n} \right) + \left(x_{nn-1} p_{n-1n} - p_{nn-1} x_{n-1n} \right)$$

$$\text{indices must}$$

$$\text{These are the only surviving nonzero term}$$

These are the only surviving nonzero terms in the sum over ℓ . because we showed that the x,p matrix elements are non-zero only between states with E different by $\pm\hbar\omega$. This is the basis for the indexing of the basis states within a block.

There *must* be a lowest E_i because, classically,

$$E = T + V$$
 and $T \ge 0$, $E \ge V_{min}$

Let n = 0 be the lowest allowed index (this is an arbitrary choice of labels).

 $p_{n-1} = x_{n-1} = 0$ (-1 is not an allowed index.)

$$x_{01}p_{10} - p_{01}x_{10} = i\hbar$$

$$\mathbf{x}, \mathbf{p}$$
 are Hermitian $(\mathbf{A} = \mathbf{A}^{\dagger})$ thus $x_{01}p_{01} - p_{01}x_{01}^{*} = i\hbar$

we are going to insert this into

we are going to insert this into the above $x_{01}p_{10}$ equation

previously
$$x_{nm} = \pm i \left(km\right)^{-1/2} p_{nm}$$
 (note that the same symbol is used for mass and one of the basis state $x_{01} = \pm i \left(km\right)^{-1/2} p_{01}$ indices)

We must make phase choices so that both \mathbf{x} and \mathbf{p} are Hermitian.

Phase ambiguity: we are free to specify the absolute phase of x or p BUT NOT BOTH because that would affect the value of [x,p]

BY CONVENTION:

all non-zero matrix elements of **x** are REAL all non-zero matrix elements of **p** are IMAGINARY

 \mathbf{try} $x_{01} = +i(km)^{-1/2} p_{01}$ and eliminate p_{01} by plugging this value of x_{01} into $x_{01}p_{01}^* - p_{01}x_{01}^* = i\hbar$: we get $i(km)^{-1/2} |p_{01}|^2 + i(km)^{-1/2} |p_{01}|^2 = i\hbar$

thus
$$|x_{01}|^2 = \frac{\hbar}{2} (km)^{-1/2}$$

$$|p_{01}|^2 = \frac{\hbar}{2} (km)^{+1/2} !!!$$

If we had chosen $x_{01} = -i(km)^{-1/2} p_{01}$ we would have obtained $\left|x_{01}\right|^2 = -\frac{\hbar}{2}(km)^{1/2}$ which is impossible!

There are two things that must be checked for self-consistency of seemingly arbitrary phase choices at every opportunity:

* Hermiticity

Recursion Relation for $\left|x_{n,n+1}\right|^2$ 6.

> Start again with the general equation derived in part #3 above using the phase choice that worked in part #5 above

 $\underbrace{x_{nn+1}}_{\text{index increasing}} = i(km)^{-1/2} \underbrace{p_{nn+1}}_{\text{one}}$ $x_{n+1n}^* = i(km)^{-1/2} p_{n+1n}^*$ Hermiticity of x and p

c.c. of both sides

index decreasing by 1 $x_{n+1n} = -i(km)^{-1/2} p_{n+1n}$

$$\therefore x_{nn\pm 1} = \pm i (km)^{-1/2} p_{nn\pm 1}$$
these 3 choices of \pm go together

by the arbitrary part of the phase ambiguity in

Now the arbitrary part of the phase ambiguity in the relationship between \mathbf{x} and \mathbf{p} has been eliminated

Apply this to the general term in $[\mathbf{x},\mathbf{p}] \Rightarrow$ requires a lot of algebra

NONLECTURE: evaluation of the four non-zero terms in $[\mathbf{x},\mathbf{p}] = i\hbar$, given here:

$$x_{nn+1}p_{n+1n} = x_{nn+1}p_{nn+1}^{*} = x_{nn+1} \left(-\frac{(km)^{1/2}}{i} x_{nn+1}^{*} \right)$$

$$= |x_{nn+1}|^{2} \left(+i(km)^{1/2} \right)$$

$$-p_{nn+1}x_{n+1n} = -\left(\frac{(km)^{1/2}}{i} x_{nn+1} \right) \left(x_{nn+1}^{*} \right) = |x_{nn+1}|^{2} \left(+i(km)^{1/2} \right)$$

$$x_{nn-1}p_{n-1n} = x_{nn-1}p_{nn-1}^{*} = x_{nn-1} \left(+\frac{(km)^{1/2}}{i} x_{nn-1}^{*} \right)$$

$$= |x_{nn-1}|^{2} \left(-i(km)^{1/2} \right)$$

$$-p_{nn-1}x_{n-1n} = -\left(-\frac{(km)^{1/2}}{i} x_{nn-1} \right) \left(x_{nn-1}^{*} \right) = |x_{nn-1}|^{2} \left(-i(km)^{1/2} \right)$$

Combine the 4 terms in $[\mathbf{x}, \mathbf{p}] = i\hbar$ to get

$$|\dot{x}_{nn+1}|^2 = \frac{\hbar (km)^{1/2} \left[\left| x_{nn+1} \right|^2 - \left| x_{nn-1} \right|^2 \right]}{2}$$

$$|x_{nn+1}|^2 = \frac{\hbar (km)^{-1/2}}{2} + \left| x_{nn-1} \right|^2$$

$$\text{OK to reverse indices in } \left| \right|^2$$

$$|x_{n+1}|^2 \leftarrow \left| x_{nn+1} \right|^2$$

$$|x_{n+1}|^2 \leftarrow \left| x_{nn+1} \right|^2$$

Each step-up in quantum number produces another additive term: $\frac{\hbar}{2}(km)^{-1/2}$

thus
$$|x_{nn+1}|^2 = (n+1)\frac{\hbar}{2}(km)^{-1/2}$$

$$|p_{nn+1}|^2 = (n+1)\frac{\hbar}{2}(km)^{+1/2}$$

$$|p_{nn+1}|^2 = (n+1)\frac{\hbar}{2}(km)^{+1/2}$$
Updated 8/13/20 8:23 AM

7. Magnitudes and Phases for $x_{nn\pm 1}$ and $p_{nn\pm 1}$

Verify phase consistency and Hermiticity for \mathbf{x} and \mathbf{p} .

In part #3 we derived $x_{nn\pm 1} = \pm i (km)^{-1/2} p_{nn\pm 1}$

one self-consistent set is

x real and positive
$$\begin{bmatrix} x_{nn+1} = +(n+1)^{1/2} \left(\frac{\hbar}{2(km)^{1/2}} \right)^{1/2} = +x_{n+1n} \\ x_{nn-1} = +(n)^{1/2} \left(\frac{\hbar}{2(km)^{1/2}} \right)^{1/2} = +x_{nn-1}$$
AND
p imaginary with sign flip for up vs. down
$$\begin{bmatrix} p_{nn+1} = -i(n+1)^{1/2} \left(\frac{\hbar(km)^{1/2}}{2} \right)^{1/2} = -p_{n+1n} \\ p_{nn-1} = +i(n)^{1/2} \left(\frac{\hbar(km)^{1/2}}{2} \right)^{1/2} = -p_{n-1n}$$

Note that nonzero matrix elements of x and p are always ∞ to the SQRT of the larger quantum number.

This is the usual phase convention: $x_{nn\pm 1}$ real and positive, $p_{nn+1} = -p_{n+1n}$ imaginary. Must be careful about phase choices because in the matrix form of QM one never really looks at wavefunctions, operators, or integrals

8. Possible existence of noncommunicating blocks along the diagonal of H, x, p

You show that
$$H_{nm} = (n+1/2)\hbar \left(\frac{k}{m}\right)^{1/2} \delta_{nm}$$
 from definition of **H**

Note that
$$\mathbf{x}^2$$
 and \mathbf{p}^2 have nonzero $\Delta n = \pm 2$ elements but $\frac{1}{2}k\mathbf{x}^2 + \frac{\mathbf{p}^2}{2m}$ has cancelling contributions in the $\Delta n = +2$ and $\Delta n = -2$ locations

This result implies

- * all of the possibly independent blocks in **x**, **p**, **H** are identical because they all start from the same lowest energy
- * $E^{(i)}_{n} = n\hbar\omega + \varepsilon_{i}$ where $\varepsilon_{i} = (1/2)\hbar\omega$ for all i
- * degeneracy of all E_n ? All E_n must have the same degeneracy, but I can't prove that this degeneracy is 1. Are there parallel non-communicating universes?

MIT OpenCourseWare https://ocw.mit.edu/

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.