5.73 Lecture \#32

Last time: Matrix elements of Slater determinantal wavefunctions
Normalization: $(N!)^{-1 / 2}$
$\mathbf{F}(i)$ : selection rule ( $\Delta \mathrm{s}-\mathrm{o} \leq 1$ ), sign depending on order
$\mathbf{G}(i, j)$ : selection rule ( $\Delta \mathrm{s}-\mathrm{o} \leq 2$ ), two additive terms with opposite signs
TODAY: Configuration $\rightarrow$ which L-S terms? $\rightarrow$ L-S basis states $\rightarrow$ matrix elements
Method of crossing out $M_{L}, M_{S}$ boxes
Ladders plus orthogonality
Many worked out examples that will not be covered in lecture.
KEY IDEAS:

* $1 / \mathrm{r}_{\mathrm{ij}}$ destroys spin-orbital labels as good quantum numbers.
* Configuration splits into widely spaced L-S-J "terms."
* $\quad \sum_{\mathrm{i}>\mathrm{i}} 1 / \mathrm{r}_{\mathrm{ij}}$ is a scalar operator with respect to $\mathbf{L}, \mathbf{S}$, and $\mathbf{J}$, thus matrix elements ${ }_{\mathrm{i}>\mathrm{j}} \quad$ are independent of $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$, and $\mathrm{M}_{\mathrm{J}}$.
* Configuration generates all possible $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ components of each L-S term.
* It can't matter which $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ component we use to evaluate the $1 / r_{i j}$ matrix elements
* Method of microstates and boxes: Book-keeping for which L-S states are present, organizes the algebra to find eigenstates of $L^{2}$ and $S^{2}$, as basis for "sum rule" method (Lecture \#33).

Longer term goals: represent "electronic structure" in terms of properties of atomic orbitals

1. Configuration $\rightarrow$ L,S terms
2. Derive correct linear combination of Slater determinants for each L,S term: several methods
3. $1 / \mathrm{r}_{\mathrm{ij}}$ matrix elements $\rightarrow F_{k}, G_{k}$ Slater-Condon parameters, Slater sum rule trick
4. $\mathbf{H}^{\mathrm{SO}}$ Spin-Orbit

* $\zeta(N L S)$ - coupling constant for each $L-S$ term in an electronic configuration
$* \zeta(N L S) \leftrightarrow \zeta_{n \ell}$ a single spin-orbit orbital integral for the entire configuration
* full $\mathrm{H}^{\mathrm{SO}}$ matrix in terms of $\zeta_{n \ell}$

5. Stark effect, Zeeman effect, optical transitions
6. transition strengths

$$
\left\langle n \ell\|r\| n^{\prime} \ell+1\right\rangle \text { (matrix elements of } \overrightarrow{\mathbf{r}}, \text { magnetic g-values) }
$$

There are a vastly smaller number of orbital parameters than the number of electronic states. The periodic table provides a basis for rationalization of orbital parameters (dependence on atomic number and on number of electrons.) Intuition vs. numerical description.

Which L-S terms belong to (nf $)^{2}$

* shorthand notation for spin-orbitals
$\mathrm{n} \ell \mathrm{m}_{\ell} \alpha / \beta$ e.g. $4 \mathrm{f} 3 \alpha$, could suppress 4 and f
(||main diagonal||represents Slater determinant, $\rangle|\rangle \ldots$ represents simple product of spin-orbitals)
* standard order (to get signs internally consistent): for $f$ spin-orbitals
$3 \alpha 3 \beta 2 \alpha 2 \beta \ldots-3 \alpha-3 \beta$ is my standard order for $f(\ell=3)$
$(2 \ell+1)(2 s+1)=(7)(2)=14$ spin-orbitals
* which Slater determinants are nonzero and distinct (i.e., not identical when spin-orbitals are permuted to a different ordering)?


## $\mathrm{f}^{2}$ - take any 2 s-o's and list in standard order

$\|2 \alpha 0 \alpha\|$ is OK , but $\|0 \alpha 2 \alpha\|$ is not in standard order, and $\|2 \beta 2 \beta\|=0$.
How many nonzero and distinct Slater determinants are there for $\mathrm{f}^{2}$ ?


How to generate all 91 linear combinations of Slater determinants that correspond to the 91 possible $\left|\mathrm{LM}_{\mathrm{L}} \mathrm{SM}_{\mathrm{S}}\right\rangle$ basis states that arise from $\mathrm{f}^{2}$ ? Next lecture.


### 5.73 Lecture \#32

Sometimes all we want to know is "which L-S terms"?
[WHY? $1 / \mathrm{r}_{\mathrm{ij}}$ is scalar with respect to $\mathbf{L}, \mathbf{S}$, and $\mathbf{J}$, thus eigenenergies are independent of $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ and $\mathrm{M}_{\mathrm{J}}$.]

EASY because we can read $\mathbf{L}_{z}=\sum_{i} \ell_{1 z}$ and $\mathbf{S}_{z}=\sum_{i} \mathbf{s}_{1 z}$ directly from the spin-orbital labels.

$$
\begin{gathered}
\mathrm{L}_{z}| | 2 \alpha 1 \beta\left\|=\sum_{i=1} \ell_{i z}\right\| \mid 2 \alpha 1 \beta\|=\hbar[2+1]\| 2 \alpha 1 \beta \| \\
M_{L}=3
\end{gathered}
$$

$\mathrm{M}_{\mathrm{L}}$ is sum of $\mathrm{m}_{\ell}{ }^{\text {, }} \mathrm{s}$
$\mathrm{M}_{\mathrm{S}}$ is sum of $\mathrm{m}_{\mathrm{S}}{ }^{\prime} \mathrm{s}$
NONLECTURE
What about $\mathbf{L}^{2}$ ? Can do this in either of two ways:

* as below (very cumbersome)
* $\quad \mathbf{L}^{2}=\mathbf{L}_{z}^{2}+(1 / 2)\left(\mathbf{L}_{+} \mathbf{L}_{-}+\mathbf{L}_{-} \mathbf{L}_{+}\right)$[separately apply each $1 \mathrm{e}^{-}$operator rather than treat entire operator as a $2 \mathrm{e}^{-}$operator.]
very laborious because

$$
\begin{aligned}
& \mathbf{L}^{2}=\sum_{i, j} \ell_{i} \cdot \ell_{j}=\sum_{\underbrace{}_{\text {one } \mathrm{e}^{-}} \ell_{i}^{2}+2 \sum_{i>1} \ell_{i} \ell_{j}}^{\text {two-e-}^{-}} \\
& \mathbf{L}^{2}\|2 \alpha 1 \beta\| \neq \sum_{i} \hbar^{2} \ell_{i}\left(\ell_{i}+1\right)\|2 \alpha 1 \beta\| \quad \ell_{i}=3 \text { for } f
\end{aligned}
$$

WORK OUT $\mathbf{L}^{2}$ matrix for $M_{L}=3, M_{S}=0$ block of $\mathrm{f}^{2}$ for future reference

$$
\begin{aligned}
& \mathbf{L}^{2}=\sum_{i, j} \ell_{i} \cdot \ell_{j}=\underbrace{\sum_{i}\left[\ell_{i}^{2}\right]+2 \sum_{i>j}\left[\ell_{i z} \ell_{j z}\right)}_{\Delta \ell=0, \Delta \mathrm{M}_{\ell}=0}+\underbrace{\frac{1}{2}\left(\ell_{i+} \ell_{j-}+\ell_{i-} \ell_{j+}\right)}_{\Delta \ell=0, \Delta \mathrm{M}_{\ell}=0}] \\
& =\Delta m_{s_{1}}=0
\end{aligned} \quad \Delta \mathrm{~m}_{\ell 1}=-\Delta \mathrm{m}_{\ell 2}= \pm 1 .
$$

all are $\Delta M_{S}=\Delta m_{s_{1}}=\Delta m_{s_{2}}=0$


All of the 12,21 exchange-type matrix elements are 0 because of $m_{s}$ mismatch.

$$
\text { e.g. } \quad\langle 2 \alpha(1) 1 \beta(1)| \begin{aligned}
& \text { space only } \\
& \text { operator }
\end{aligned}|1 \beta(1) 2 \alpha(2)\rangle=0
$$

Recall $\pm(\langle 12| \mathrm{G}|12\rangle-\langle 12| \mathrm{G}|21\rangle)$ for $2 e^{-}$operator.
We get:

$$
\begin{aligned}
& \mathbf{L}^{2}| | 2 \beta 1 \alpha| |=\hbar^{2}\left[28| | 2 \beta 1 \alpha \|-10| | 2 \alpha 1 \beta| |+\left(12 \cdot 2^{-1 / 2}\right)| | 3 \beta 0 \alpha| |\right] \\
& \mathbf{L}^{2} \mid 3 \alpha 0 \beta \|=\hbar^{2}\left[(24+3 \cdot 0)| | 3 \alpha 0 \beta\left\|+\left(12 \cdot 2^{-1 / 2}\right)| | 2 \alpha 1 \beta\right\|\right] \\
& \mathbf{L}^{2}| | 3 \beta 0 \alpha \|=\hbar^{2}\left[24| | 3 \beta 0 \alpha \|+\left(12 \cdot 2^{-1 / 2}\right)| | 2 \beta 1 \alpha| |\right]
\end{aligned}
$$

$$
\mathrm{L}^{2}=\hbar^{2} \begin{gathered}
\|3 \alpha 0 \beta\| \\
\\
\\
\\
-\|2 \alpha 1 \beta\| \\
-\|0 \alpha 3 \beta\| \|
\end{gathered}\left(\begin{array}{cccc}
24 & 6 \cdot 2^{1 / 2} & 0 & 0 \\
6 \cdot 2^{1 / 2} & 28 & -10 & 0 \\
0 & -10 & 28 & 6 \cdot 2^{1 / 2} \\
0 & 0 & 6 \cdot 2^{1 / 2} & 24
\end{array}\right)
$$

[the bottom two Slater determinants are intentionally out of standard order to display effects of decreasing values of $m_{\ell}(1)$ and increasing values of $m_{\ell}(2)$.]

$$
\left|L S M_{L} M_{S}\right\rangle=|5130\rangle
$$

Example: found eigenvalues and eigenvectors of this block $\mathrm{M}_{\mathrm{L}}=3$, $M_{S}=0$ of $f^{2}$

$$
\begin{aligned}
& \frac{\mathrm{L}^{2}}{\hbar^{2}}\left[3^{-1 / 2}\|3 \alpha 0 \beta\|+3^{-1 / 2}\|3 \beta 0 \alpha\|+6^{-1 / 2}\|2 \alpha 1 \beta\|+6^{-1 / 2}\|2 \beta 1 \alpha\|\right]=30[] \\
& \frac{\mathrm{L}^{2}}{\hbar^{2}}\left[6^{-1 / 2}\|3 \alpha 0 \beta\|+6^{-1 / 2}\|3 \beta 0 \alpha\|-3^{-1 / 2}\|2 \alpha 1 \beta\|-3^{-1 / 2}\|2 \beta 1 \alpha\|\right]=12[]
\end{aligned}
$$

$$
\frac{\mathrm{L}^{2}}{\hbar^{2}}\left[11^{-1 / 2}\|3 \alpha 0 \beta\|-11^{-1 / 2}\|3 \beta 0 \alpha\|+3 \cdot 22^{-1 / 2}\|2 \alpha 1 \beta\|-3 \cdot 22^{-1 / 2}\|2 \beta 1 \alpha\|\right]=42[]
$$

$$
\frac{\mathrm{L}^{2}}{\hbar^{2}}\left[3 \cdot 22^{-1 / 2}\|3 \alpha 0 \beta\|-3 \cdot 22^{-1 / 2}\|3 \beta 0 \alpha\|-11^{-1 / 2}\|2 \alpha 1 \beta\|+11^{-1 / 2}\|2 \beta 1 \alpha\|\right]=20[]
$$

(Note how easy it is to see that normalization is correct.) Look at the sum of the squares of each coefficient!
a lot of algebra is not presented here! (especially the derivation of the 4 eigenvectors)

* each Slater basis state gets "used up" [sum of squares of that basis set is 1]
* the first 2 eigenfunctions are in the form: $\alpha \beta+\beta \alpha \rightarrow S=1$
* the second 2 eigenfunctions are in the form: $\alpha \beta-\beta \alpha \rightarrow S=0$

You could prove these $S=1$ and $S=0$ results by applying $\mathbf{S}^{2}$ to above eigenfunctions of $\mathbf{L}^{2}$.

We have obtained $\left|L S M_{L} M_{S}\right\rangle=|5130\rangle,|3130\rangle,|6030\rangle$, and $|4030\rangle$ eigenstates.

## END OF NON-LECTURE

Non-lecture pages were intended to show that applying $\mathbf{L}^{2}$ and $\mathbf{S}^{2}$ to Slater determinants is laborious - much more so than applying $\mathbf{L}_{z}$ and $\mathbf{S}_{z}$.

This is one reason why we use the "crossing out $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ microstates" method to figure out which L,S states must be considered. Often this is sufficient and it can be the basis for some shortcut tricks!

The $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ method works because:

* each configuration generates the full $(2 L+1)(2 S+1)$ manifold of $M_{L}, M_{S}$ states associated with each L,S term. Why? If you have one $\left|M_{L} M_{S}\right\rangle$ member of $\left|\mathrm{LM}_{\mathrm{L}} \mathrm{SM}_{\mathrm{S}}\right\rangle$ you can generate all of the others for that L,S using $\mathbf{L}_{ \pm}$and $\mathbf{S}_{ \pm}$operators.
* This must be true because, starting with $\mathrm{M}_{\mathrm{L}}=\mathrm{L}, \mathrm{M}_{\mathrm{S}}=\mathrm{S}, \mathrm{L}_{-}$and $\mathrm{S}_{-}$can be used to generate all $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ components of the full $\mathrm{L}, \mathrm{S}$ term without the need to go outside the specific configuration.

| $\mathrm{M}_{\mathrm{S}}=\mathrm{S}_{\text {MAX }}$ | $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ metho $\mathrm{M}_{\mathrm{L}}=\mathrm{L}_{\mathrm{MAX}}$ | $\mathrm{L}_{\mathrm{MAX}}-1$ | $\mathrm{L}_{\text {MAX }}-2$ | $\ldots$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | list all Slater determinants |  |  |  |  |
| S-1 |  |  |  |  |  |
|  |  |  |  |  |  |

No need to include negative values of $\mathrm{M}_{\mathrm{S}}$ or $\mathrm{M}_{\mathrm{L}}$. Why? They are accessed by $\mathbf{L}_{-}+\mathbf{S}_{-}$and contain no new information.


Need not include $\mathrm{M}_{\mathrm{S}}<0$ or $\mathrm{M}_{\mathrm{L}}<0$ because these are identical to the $\mathrm{M}_{\mathrm{L}}>0$ and $\mathrm{M}_{\mathrm{S}}>0$ quadrant.

Notice that as you go down by 1 in $\mathrm{M}_{\mathrm{L}}$, the number of Slater determinants in each $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ box increases only by 1 . This is a prerequisite for using the $\mathbf{L}_{-}$plus orthogonality method! This useful simplicity does not occur as you go down a column in $\mathrm{M}_{\mathrm{S}}$.

This convenient situation does not occur for $d^{3}$ or $f^{3}$. Why? Because there can be more than one $L-S$ term of a specified symmetry. For example, for $d^{2}$ there are ${ }^{1} S,{ }^{3} P,{ }^{1} D,{ }^{3} F,{ }^{1} G$ terms, but for $d^{3}$ there are ${ }^{2} P,{ }^{4} P$, two ${ }^{2} D,{ }^{2} F$, ${ }^{4} F,{ }^{2} G$ and ${ }^{2} H$ terms.


Start in extreme $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ corner - This generally contains only one Slater determinant
$L=M_{L_{M A X}} \quad, \quad S=M_{S_{\text {MAX }}} \quad$ so we have one of the L-S terms

$$
\begin{array}{lr}
\text { This L-S term } & -L \leq M_{L} \leq L \\
\text { includes one of each } & -S \leq M_{S} \leq S \\
\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}} \text { in the range } &
\end{array}
$$

This means this L-S term will "use up" the equivalent of one Slater determinant in each $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ box.

Bookkeeping: cross out one Slater determinant, any one, from each relevant $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ box.
Now repeat, again starting at the remaining extreme $M_{L}, M_{S}$ corner

$$
\begin{array}{llr}
\text { etc. } \begin{array}{llr}
* 1 \mathrm{I} & 1 \times 13 & =13 \\
*{ }^{3} \mathrm{H} & 3 \times 11 & =33 \\
*{ }^{1} \mathrm{G} & 1 \times 9 & =9 \\
*{ }^{3} \mathrm{~F} & 3 \times 7 & =21 \\
*{ }^{1} \mathrm{D} & 1 \times 5 & =5 \\
{ }^{3} \mathrm{P} & 3 \times 3 & =9 \\
*{ }^{1} \mathrm{~S} & 1 \times 1 & =1 \\
& & 91
\end{array} \begin{array}{l}
\text { as required! [It is a good idea to use this total } \\
\text { degeneracy of the configuration as a check.] }
\end{array}
\end{array}
$$

Since there is only one Slater determinant in the $\mathrm{M}_{\mathrm{L}}=5, \mathrm{M}_{\mathrm{S}}=1$ box, generate all triplets by repeated application of $\mathbf{L}_{-}$to $||3 \alpha 2 \alpha||$ (plus orthogonality) and generate all singlets by $\mathbf{L}_{-}$on
$\|3 \alpha 3 \beta\|$. Many orthogonalization steps are needed! Especially for singlets. Need to use S_ also.

Before illustrating the ladders plus orthogonality method, it is useful to show some patterns and list some valuable tricks.

The most difficult cases are $(n \ell)^{\mathrm{m}}$ where $\mathrm{m}=2,3, \ldots 2 \ell$.
Easy to combine $\mathrm{n} \ell$ with $\mathrm{n}^{\prime} \ell^{\prime}$ because no need for special bookkeeping.

| $\ell$ | $(\mathrm{n} \ell)^{2}$ | $(\mathrm{n} \ell)^{3}$ |
| :---: | :---: | :---: |
| s | ${ }^{1} \mathrm{~S}$ | - |
| p | ${ }^{1} \mathrm{D},{ }^{3} \mathrm{P},{ }^{\mathrm{I}} \mathrm{S}$ | ${ }^{4} \mathrm{~S},{ }^{2} \mathrm{D},{ }^{2} \mathrm{P}$ |
| d | ${ }^{1} \mathrm{G},{ }^{3} \mathrm{~F},{ }^{\mathrm{I}} \mathrm{D},{ }^{3} \mathrm{P},{ }^{1} \mathrm{~S}$ | ${ }^{2} \mathrm{H},{ }^{2} \mathrm{G},{ }^{2} \mathrm{~F},{ }^{4} \mathrm{~F},{ }^{2} \mathrm{D}(2),{ }^{4} \mathrm{P},{ }^{2} \mathrm{P}$ |
| f | ${ }^{1} \mathrm{I},{ }^{3} \mathrm{H},{ }^{1} \mathrm{G},{ }^{3} \mathrm{~F},{ }^{1} \mathrm{D},{ }^{3} \mathrm{P},{ }^{1} \mathrm{~S}$ |  |
|  | A simple, memorable pattern | Rather complicated |

Get the same L-S states for 2 and 3 "holes" (e.g. $p^{4} \leftrightarrow p^{2}, d^{3} \leftrightarrow d^{7}$ ) instead of electrons.

Also $(n \ell)^{2} n^{\prime} \ell^{\prime} \rightarrow\left[n \ell^{22 S+1} L\right] \otimes\left({ }^{2} \ell^{\prime}\right)={ }^{(2 S+2, \text { and } 2 S)}\left(L+\ell^{\prime}, L+\ell^{\prime}-1, \cdots\left|L-\ell^{\prime}\right|\right)$

Simple vector coupling of the $n^{\prime} \ell^{\prime}$ electron to the two-electron $n \ell^{2}{ }^{2 S+1} \mathrm{~L}$ term. No Pauli exclusion because $n^{\prime} \ell$ ' is distinguished from $n \ell$.

When the $\mathrm{e}^{-}$are in distinct subshells (different values of $\ell$ and $n$ ), there is no need to be as careful about the exclusion principle.

### 5.73 Lecture \#32

## Ladders plus Orthogonality Method

$f^{2}$ example
Start with 2 extreme UNIQUE states

1. $\left|{ }^{3} \mathrm{H} M_{L}=5, M_{s}=1\right\rangle=\|3 \alpha 2 \alpha\|$

Use this to generate all triplet states by applying $\mathbf{L}_{-}$repeatedly and using orthogonality when necessary. Note that \# of determinants in each $M_{L}, M_{S}=1$ box increases no faster than in steps of 1 .
To get to ${ }^{3} \mathrm{P}$, must not only apply orthogonality several times, but must follow each L state down to the $\mathrm{M}_{\mathrm{L}}=1$ box!
2. To get singlets, start with the unique $\left.\left.\right|^{1} \mathrm{I} M_{L}=6, M_{s}=0\right\rangle$ state.

Again, as $\mathbf{L}_{-}$takes us to successively lower- $\mathrm{M}_{\mathrm{L}}$ boxes, \# of determinants increases in steps of 1 . But some of these steps are due to triplets with $\mathrm{M}_{\mathrm{S}}=0$. Need to step triplets down into $\mathrm{M}_{\mathrm{S}}=0$ territory using $\mathrm{S}_{-}$once. Lots more orthogonality steps, lots more trails being followed. AWFUL, but do-able.

Nonlecture

$$
\begin{aligned}
\left|{ }^{3} \mathrm{H} M_{L} M_{S}\right\rangle & = \\
\mathbf{L}_{-}\left|{ }^{3} \mathrm{H} 51\right\rangle & =\sum_{i} \ell_{i}\|| | 3 \alpha 2 \alpha\| \\
\hbar[5 \cdot 6-5 \cdot 4]^{1 / 2}\left|{ }^{3} \mathrm{H} 41\right\rangle & =\hbar[3 \cdot 4-3 \cdot 2]^{1 / 2}\|2 \alpha / 2 \alpha\|+\hbar(3 \cdot 4-2 \cdot 1)^{1 / 2}\|3 \alpha 1 \alpha\| \\
\left.\left.\right|^{3} \mathrm{H} 41\right\rangle & =\|3 \alpha 1 \alpha\| \quad \text { big surprise! } \\
\mathbf{L}_{-}\left|{ }^{3} \mathrm{H} 41\right\rangle & =\Sigma \ell_{i}\|3 \alpha 1 \alpha\| \\
\left|{ }^{3} \mathrm{H} 31\right\rangle & =(1 / 3)^{1 / 2}\|2 \alpha 1 \alpha\|+(2 / 3)^{1 / 2}\|3 \alpha 0 \alpha\|
\end{aligned}
$$

orthogonality: $\quad\left|{ }^{3} \mathrm{~F} 31\right\rangle=\left(\frac{2}{3}\right)^{1 / 2}\|2 \alpha 1 \alpha\|-\left(\frac{1}{3}\right)^{1 / 2}\|3 \alpha 0 \alpha\|$
$M_{L} \quad M_{S}$
and so on, to get all $\left|{ }^{3} \mathrm{~L} L 1\right\rangle$ many-electron functions

$$
\mathrm{M}_{\mathrm{S}}=0
$$

Try a detour into singłet territory, and then check for self-consistency.

$$
\begin{aligned}
\mathbf{S}_{-} \mid{ }^{3} \mathrm{~F} & 31\rangle= \\
\sum_{i} \mathbf{s}_{i^{-}}\left[\left(\frac{2}{3}\right)^{1 / 2}\|2 \alpha 1 \alpha\|-\left(\frac{1}{3}\right)^{1 / 2}\|3 \alpha 0 \alpha\|\right] & \begin{array}{l}
\text { (by orthogonality } \\
\text { with ) }{ }^{3} \mathrm{H} \\
31\rangle
\end{array} \\
\hbar[1 \cdot 2-1 \cdot 0]^{1 / 2} \mid{ }^{3} \mathrm{~F} & 30\rangle= \\
= & {\left[\left(\frac{2}{3}\right)^{1 / 2}\left[\frac{1}{2} \cdot \frac{3}{2}-\frac{1}{2}\left(-\frac{1}{2}\right)\right]^{1 / 2}(\|2 \beta 1 \alpha\|+\|2 \alpha 1 \beta\|)\right.}
\end{aligned}
$$

$\left|{ }^{3} \mathrm{~F} 30\right\rangle=\left(\frac{1}{3}\right)^{1 / 2}(| | 2 \beta 1 \alpha \|+||2 \alpha 1 \beta||)-\left(\frac{1}{6}\right)^{1 / 2}(| | 3 \beta 0 \alpha\|+\| 3 \alpha 0 \beta| |)$
$\mathbf{S}_{-}\left|{ }^{3} \mathrm{H} 31\right\rangle=\sum_{i} \mathrm{~S}_{i^{-}}\left[\left(\frac{1}{3}\right)^{1 / 2}\|2 \alpha 1 \alpha\|+\left(\frac{2}{3}\right)^{1 / 2}\|3 \alpha 0 \alpha\|\right]$
$\left|{ }^{3} \mathrm{H} 30\right\rangle=\left(\frac{1}{6}\right)^{1 / 2}\left(| | 2 \beta 1 \alpha|\|+||2 \alpha 1 \beta||)+\left(\frac{1}{3}\right)^{1 / 2}(| | 3 \beta 0 \alpha| |+||3 \alpha 0 \beta||)\right.$
There are 4 Slater determinants in the $\mathrm{M}_{\mathrm{L}}=3, \mathrm{M}_{\mathrm{S}}=0$ box. We can't find the other two singlet linear combinations uniquely without using $\mathbf{L}_{-}$on the extreme singlets.
$L_{-}\left|{ }^{1} \mathrm{I} \quad 60\right\rangle=\Sigma \ell_{i^{-}}\|3 \alpha 3 \beta\|$
$\hbar[6 \cdot 7-6 \cdot 5]^{1 / 2}\left|{ }^{1} \mathrm{I} \quad 50\right\rangle=\hbar[3 \cdot 4-3 \cdot 2]^{1 / 2}(| | 2 \alpha 3 \beta\|+| | 3 \alpha 2 \beta\|)$
sign to reverse order
$\left|{ }^{1} \mathrm{I} \quad 50\right\rangle=\left(\frac{1}{2}\right)^{1 / 2}[| | 3 \alpha 2 \beta\|-\| 3 \beta 2 \alpha \mid \|]$ orthogonality $\left|{ }^{3} \mathrm{H} \quad 50\right\rangle=\left(\frac{1}{2}\right)^{1 / 2}[| | 3 \alpha 2 \beta| |+||3 \beta 2 \alpha||]$
$\mathrm{L}_{-}\left|{ }^{1} \mathrm{I} \quad 50\right\rangle=\Sigma \ell_{i}\left(\frac{1}{2}\right)^{1 / 2}[\|3 \alpha 2 \beta\|-\| 3 \beta 2 \alpha| |]$
$\left.{ }^{1} \mathrm{I} 40\right\rangle=\left(\frac{1}{44}\right)^{1 / 2}\left[(10)^{1 / 2}(| | 3 \alpha 1 \beta \|-||3 \beta 1 \alpha||)+6^{1 / 2}(| | 2 \alpha 2 \beta| |-||2 \beta 2 \alpha||)\right]$
$\left.{ }^{1} \mathrm{I} 40\right\rangle=\left(\frac{5}{22}\right)^{1 / 2}\left[(\|3 \alpha 1 \beta\|-\|3 \beta 1 \alpha\|)+\left(\frac{6}{11}\right)| | 2 \alpha 2 \beta \|\right]$
$\left.\left|{ }^{3} \mathrm{H} 40\right\rangle=\left(\frac{1}{20}\right)^{1 / 2}\left[(6)^{1 / 2} \underline{(| | 2 \alpha 2 \beta\|+\| 2 \beta 2 \alpha \mid \|)+10^{1 / 2}(| | 3 \alpha 1 \beta \|}\|+\mid 3 \beta 1 \alpha\|\right)\right]$
$\left|{ }^{3} \mathrm{H} 40\right\rangle=\left(\frac{1}{2}\right)^{1 / 2}(| | 3 \alpha 1 \beta \|+||3 \beta 1 \alpha||)$
orthogonality
$\left.{ }^{1} \mathrm{G} 40\right\rangle=\left(\frac{3}{11}\right)^{1 / 2}\left[(\|3 \alpha 1 \beta\|-\|3 \beta 1 \alpha\|)-\left(\frac{5}{11}\right)^{1 / 2}\|2 \alpha 2 \beta\|\right]$
At last we are ready to enter the $\mathrm{M}_{\mathrm{L}}=3, \mathrm{M}_{\mathrm{S}}=0$ block!
It is clear that if we apply $\mathbf{L}_{-}$to $\left|{ }^{3} \mathrm{H} 40\right\rangle$, we will get the same form that we already derived starting from $\left|{ }^{3} \mathrm{H} 51\right\rangle$ Instead, let's lower $\left.{ }^{1} \mathrm{I} 40\right\rangle$.
$\mathbf{L}_{-}\left|{ }^{1} \mathrm{I} 40\right\rangle=\sum_{i} \ell_{i^{-}}\left\{\left(\frac{5}{22}\right)^{1 / 2}[\|3 \alpha 1 \beta\|-\|1 \beta 3 \alpha\| \mid]+\left(\frac{6}{11}\right)^{1 / 2}\|2 \alpha 2 \beta\|\right\}$

$$
\begin{aligned}
\left.\left.\right|^{1} \mathrm{I} 30\right\rangle= & (30)^{1 / 2}\left\{\left(\frac{5}{22}\right)^{1 / 2}(6)^{1 / 2}(\|\mid 2 \alpha 1 \beta\|-\|2 \beta 1 \alpha\|)+\left(\frac{5}{22}\right)^{1 / 2}(12)^{1 / 2}(\|3 \alpha 0 \beta\|-\|3 \beta 0 \alpha\|)\right. \\
& \left.+\left(\frac{6}{11}\right)^{1 / 2}(10)^{1 / 2}(\|2 \alpha 1 \beta\|-\|2 \beta 1 \alpha\|)\right\} \\
\left|{ }^{1} \mathrm{I} 30\right\rangle= & {\left[\left(\frac{1}{22}\right)^{1 / 2}+\left(\frac{4}{22}\right)^{1 / 2}\right](\|\mid 2 \alpha 1 \beta\|-\|2 \beta 1 \alpha\|)+\left(\frac{2}{22}\right)^{1 / 2}(\|3 \alpha 0 \beta\|-\|3 \beta 0 \alpha\|) }
\end{aligned}
$$

$$
\left|{ }^{1} \mathrm{I} \quad 30\right\rangle=\left(\frac{9}{22}\right)^{1 / 2}(\|2 \alpha 1 \beta\|-\|2 \beta 1 \alpha\|)+\left(\frac{2}{22}\right)^{1 / 2}(\|3 \alpha 0 \beta\|-\|3 \beta 0 \alpha\|)
$$

Finally, by orthogonality:
$\xrightarrow{\text { important }}\left|{ }^{1} G \quad 30\right\rangle=-\left(\frac{1}{11}\right)^{1 / 2}(\|2 \alpha 1 \beta\|-\|2 \beta 1 \alpha\|)+\left(\frac{9}{22}\right)^{1 / 2}(\|3 \alpha 0 \beta\|-\|3 \beta 0 \alpha\|)$
Does this match what one would get from $\left.\left.\mathbf{L}_{-}\right|^{1} G 40\right\rangle$ ?

$$
\begin{aligned}
\left.\left.\mathbf{L}_{-}\right|^{1} G \quad 40\right\rangle= & \sum_{i} \ell_{i^{-}}\left\{\left(\frac{3}{11}\right)^{1 / 2}[\|\mid 3 \alpha 1 \beta\|-\|1 \beta 3 \alpha\|]-\left(\frac{5}{11}\right)^{1 / 2}\|2 \alpha 2 \beta\|\right\} \\
\left.\left.\right|^{1} \mathrm{G} 30\right\rangle= & (8)^{1 / 2}\left\{\left(\frac{5}{11}\right)^{1 / 2}(6)^{1 / 2}(\||2 \alpha 1 \beta\|-\| 2 \beta 1 \alpha|\|)+\left(\frac{3}{11}\right)^{1 / 2}(12)^{1 / 2}(\|3 \alpha 0 \beta\|-\|3 \beta 0 \alpha\|)\right. \\
& \left.-\left(\frac{5}{11}\right)^{1 / 2}(10)^{1 / 2}(\|2 \alpha 1 \beta\|-\|2 \beta 1 \alpha\|)\right\}
\end{aligned}
$$

$$
\xrightarrow{\text { IMPORTANT }}\left|{ }^{1} \mathrm{G} \quad 30\right\rangle=-\left(\frac{1}{11}\right)^{1 / 2}(\|2 \alpha 1 \beta\|-\|2 \beta 1 \alpha\|)+\left(\frac{9}{22}\right)^{1 / 2}(\|3 \alpha 0 \beta\|-\|3 \beta 0 \alpha\|)
$$

checks!

## End of Non-Lecture

As you see, this ladders plus orthogonality method is extremely laborious. There is a much better way!
$* *\left[\begin{array}{l}\text { There are several patterns: singlets for } M_{S}=0 \text { always have the } \\ \text { form }(\alpha \beta-\beta \alpha) \text { and } M_{S}=0 \text { triplets always }(\alpha \beta+\beta \alpha) .\end{array}\right.$
This can be generalized for any value of $S$ (page 151 of Hélène Lefebvre-
Brion-Robert Field Perturbations 2004 book)
[Also M. Yamazaki, Sci. Rep. Kanezawa Univ. 8 , 371 (1963).]

## 2. Failure and Inconvenience of ladder method

The ladder method is OK when you have a single target $\left|L M_{L} S M_{S}\right\rangle$ state, especially when it is near an edge of the $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ box diagram.
Essential that \# of Slater determinants in each $M_{L} M_{S}$ box increases in steps of 1 as you step down in $\mathrm{M}_{\mathrm{L}}$ or $\mathrm{M}_{\mathrm{S}}$.

Fails when there are two L-S terms of same $L$ and $S$ in a given configuration. Then we must set up a $2 \times 2$ secular equation anyway.
e.g. $\quad(n d)^{3}{ }^{2} \mathrm{H},{ }^{2} \mathrm{G},{ }^{2} \mathrm{~F},{ }^{4} \mathrm{~F},{ }^{2} \mathrm{D}(2),{ }^{4} \mathrm{P},{ }^{2} \mathrm{P}$

## 3. $L^{2}$ and $\mathbf{S}^{2}$ Matrix Method

Another method is based on constructing $\mathbf{L}^{2}$ and $\mathbf{S}^{2}$ matrices in the Slater determinantal basis set. This is no cakewalk either (but this is easier)!

Since usually $\mathrm{S}_{\mathrm{MAX}} \ll \mathrm{L}_{\mathrm{MAX}}$ for a configuration when using $\mathbf{L}^{2}+\mathbf{S}^{2}$ matrices method, it is best to start with the $\mathbf{S}^{2}$ matrix because it is simpler.

MIT OpenCourseWare
https://ocw.mit.edu/

### 5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

