5.73 Lecture #32 32 - 1 Configuration and Resultant L-S-J "Terms" (States)

Last time: Matrix elements of Slater determinantal wavefunctions Normalization: $(N!)^{-1/2}$

F(*i*): selection rule (Δ s-o \leq 1), sign depending on order

G(*i*,*j*): selection rule (Δ s-o \leq 2), two additive terms with opposite signs

TODAY: Configuration \rightarrow which L-S terms? \rightarrow L-S basis states \rightarrow matrix elements

Method of crossing out M_L , M_S boxes

Ladders plus orthogonality

Many worked out examples that will not be covered in lecture.

KEY IDEAS:

- * $1/r_{ii}$ destroys spin-orbital labels as good quantum numbers.
- * Configuration splits into widely spaced L-S-J "terms."
- * $\sum_{i>j} 1/r_{ij}$ is a *scalar operator* with respect to **L**, **S**, and **J**, thus matrix elements are independent of M_L, M_S, and M_J.
- * Configuration generates all possible M_L , M_S components of each L-S term.
- * It can't matter which M_L , M_S component we use to evaluate the $1/r_{ij}$ matrix elements
- * Method of microstates and boxes: Book-keeping for which L-S states are present, organizes the algebra to find eigenstates of L^2 and S^2 , as basis for "sum rule" method (Lecture #33).

Longer term goals: represent "electronic structure" in terms of properties of atomic orbitals

- 1. Configuration \rightarrow L,S terms
- 2. Derive correct linear combination of Slater determinants for each L,S term: several methods
- 3. 1/r_{ij} matrix elements \rightarrow $F_k,$ G_k Slater-Condon parameters, Slater sum rule trick
- 4. H^{SO} Spin-Orbit
 - * $\zeta(NLS)$ coupling constant for each *L*-*S* term in an electronic configuration
 - * $\zeta(NLS) \leftrightarrow \zeta_{n\ell}\,$ a single spin-orbit orbital integral for the entire configuration
 - * full H^{SO} matrix in terms of $\zeta_{n\ell}$
- 5. Stark effect, Zeeman effect, optical transitions
- 6. transition strengths

 $\langle n\ell || r || n'\ell + 1 \rangle$ (matrix elements of $\vec{\mathbf{r}}$, magnetic g-values)

There are a vastly smaller number of orbital parameters than the number of electronic states. The periodic table provides a basis for rationalization of orbital parameters (dependence on atomic number and on number of electrons.) Intuition vs. numerical description.

Which L-S terms belong to $(nf)^2$ * shorthand notation for spin-orbitals $n\ell m_{\ell} \alpha/\beta$ e.g. 4f3 α , could suppress 4 and f ($\|$ main diagonal $\|$ represents Slater determinant, $|\rangle|$ \rangle ...represents simple product of spin-orbitals) * standard order (to get signs internally consistent): for f spin-orbitals $3\alpha 3\beta 2\alpha 2\beta$... $-3\alpha -3\beta$ is my standard order for f ($\ell = 3$) $(2\ell+1)(2s+1)=(7)(2)=14$ spin-orbitals

* which Slater determinants are nonzero and distinct (i.e., not identical when spin-orbitals are permuted to a different ordering)?

f² - take any 2 s-o's and list in *standard order*

 $\|2\alpha 0\alpha\|$ is OK, but $\|0\alpha 2\alpha\|$ is not in standard order, and $\|2\beta 2\beta\| = 0$.

How many nonzero and distinct Slater determinants are there for f²?

14 spin - orbitals 2 identical electrons $\frac{14 \cdot 13}{2} = 91$ Slater determinants! general $(n\ell)^p : \prod_{n\ell} \frac{\left[2(2\ell+1)\right]!}{\left[2(2\ell+1)-p\right]!} \frac{1}{p!}$ put p indistinguishable eand $2(2\ell+1)-p$ indistinguishable "holes" into $2(2\ell+1)$ boxes subshell : one such factor for each subshell

How to generate all 91 linear combinations of Slater determinants that correspond to the 91 possible $|LM_LSM_S\rangle$ basis states that arise from f²? Next lecture.

Sometimes all we want to know is "which L-S terms"? [WHY? $1/r_{ij}$ is scalar with respect to L,S, and J, thus eigenenergies are independent of M_L , M_S and M_J .]

EASY because we can read $\mathbf{L}_{z} = \sum_{i} \ell_{1z}$ and $\mathbf{S}_{z} = \sum_{i} \mathbf{s}_{1z}$ directly from the spin-orbital

labels.

$$L_{z} ||2\alpha 1\beta|| = \sum_{i=1}^{n} \ell_{iz} ||2\alpha 1\beta|| = \hbar [2+1] ||2\alpha 1\beta||$$
$$M_{z} = 3$$

 $M_{\rm L}~is~sum~of~m_\ell^{\,\prime}s$ $M_{\rm S}~is~sum~of~m_{\rm S}^{\,\prime}s$

NONLECTURE

What about L^2 ? Can do this in either of two ways:

- * as below (very cumbersome)
- * $\mathbf{L}^2 = \mathbf{L}_z^2 + (1/2)(\mathbf{L}_+\mathbf{L}_- + \mathbf{L}_-\mathbf{L}_+)$ [separately apply each

1e⁻ operator rather than treat entire operator as a 2e⁻ operator.]

very laborious because

$$\mathbf{L}^{2} = \sum_{i,j} \boldsymbol{\ell}_{i} \cdot \boldsymbol{\ell}_{j} = \sum_{i \neq j} \boldsymbol{\ell}_{i}^{2} + 2\sum_{i \neq j} \boldsymbol{\ell}_{i} \boldsymbol{\ell}_{j}$$
$$\underbrace{\mathbf{L}^{2} \left\| 2\alpha \mathbf{l}\beta \right\| \neq \sum_{i} \hbar^{2} \boldsymbol{\ell}_{i} \left(\boldsymbol{\ell}_{i} + \mathbf{l} \right) \left\| 2\alpha \mathbf{l}\beta \right\| \quad \boldsymbol{\ell}_{i} = 3 \text{ for } f$$

WORK OUT L² matrix for $M_L = 3$, $M_S = 0$ block of f² for future reference

$$\mathbf{L}^{2} = \sum_{i,j} \ell_{i} \cdot \ell_{j} = \sum_{i} \left[\ell_{i}^{2} \right] + 2 \sum_{i>j} \left[\ell_{iz} \ell_{jz} + \frac{1}{2} \left(\ell_{i+} \ell_{j-} + \ell_{i-} \ell_{j+} \right) \right]$$
$$= \Delta m_{c} = 0$$
$$\Delta \ell = 0, \ \Delta \mathbf{M}_{\ell} = 0$$
$$\Delta m_{\ell 1} = -\Delta m_{\ell 2} = \pm 1$$

all are $\Delta M_s = \Delta m_{s_1} = \Delta m_{s_2} = 0$

updated August 27, 2020 @ 1:42 PM

[the bottom two Slater determinants are intentionally out of standard order to display effects of decreasing values of $m_{\ell}(1)$ and increasing values of $m_{\ell}(2)$.]

 $\begin{bmatrix} LSM_{L}M_{s} \rangle = |5130 \rangle \\ M_{s} = 0 \text{ of } f^{2} \\ \frac{L^{2}}{\hbar^{2}} \Big[3^{-1/2} \| 3\alpha 0\beta \| + 3^{-1/2} \| 3\beta 0\alpha \| + 6^{-1/2} \| 2\alpha 1\beta \| + 6^{-1/2} \| 2\beta 1\alpha \| \Big] = 30 \Big[\\ \frac{L}{\hbar^{2}} \Big[6^{-1/2} \| 3\alpha 0\beta \| + 6^{-1/2} \| 3\beta 0\alpha \| - 3^{-1/2} \| 2\alpha 1\beta \| - 3^{-1/2} \| 2\beta 1\alpha \| \Big] = 12 \Big[\\ \frac{L^{2}}{\hbar^{2}} \Big[11^{-1/2} \| 3\alpha 0\beta \| - 11^{-1/2} \| 3\beta 0\alpha \| + 3 \cdot 22^{-1/2} \| 2\alpha 1\beta \| - 3 \cdot 22^{-1/2} \| 2\beta 1\alpha \| \Big] = 42 \Big[\\ \frac{L^{2}}{\hbar^{2}} \Big[3 \cdot 22^{-1/2} \| 3\alpha 0\beta \| - 3 \cdot 22^{-1/2} \| 3\beta 0\alpha \| - 11^{-1/2} \| 2\alpha 1\beta \| + 11^{-1/2} \| 2\beta 1\alpha \| \Big] = 20 \Big[\\ \end{bmatrix}$

(Note how easy it is to see that normalization is correct.) Look at the sum of the squares of each coefficient!

a lot of algebra is not presented here! (especially the derivation of the 4 eigenvectors)

- * each Slater basis state gets "used up" [sum of squares of that basis set is 1]
- * the first 2 eigenfunctions are in the form: $\alpha \beta + \beta \alpha \rightarrow S = 1$
- * the second 2 eigenfunctions are in the form: $\alpha \beta \beta \alpha \rightarrow S = 0$

You could prove these S = 1 and S = 0 results by applying S^2 to above eigenfunctions of L^2 .

We have obtained $|LSM_LM_S\rangle = |5130\rangle, |3130\rangle, |6030\rangle$, and $|4030\rangle$ eigenstates.

END OF NON-LECTURE

Non-lecture pages were intended to show that applying L^2 and S^2 to Slater determinants is laborious — much more so than applying L_z and S_z .

This is one reason why we use the "crossing out M_L , M_S microstates" method to figure out which L,S states must be considered. Often this is sufficient — and it can be the basis for some shortcut tricks!

The M_L, M_S method works because:

- * each configuration generates the full (2L + 1) (2S + 1) manifold of M_L, M_S states associated with each L,S term. Why? If you have one $|M_LM_S\rangle$ member of $|LM_LSM_S\rangle$ you can generate all of the others for that L,S using L_{\pm} and S_{\pm} operators.
- * This must be true because, starting with $M_L = L$, $M_S = S$, $L_and S_can be used to generate all <math>M_L$, M_S components of the full L,S term without the need to go outside the specific configuration.

 $S_{MAX} = (\# \text{ of } e^{-})/2.$

No need to include negative values of M_S or M_L . Why? They are accessed by $L_+ S_-$ and contain no new information.

Need not include $M_{\rm S}$ < 0 or $M_{\rm L}$ < 0 because these are identical to the $M_{\rm L}$ > 0 and $M_{\rm S}$ > 0 quadrant.

Notice that as you go down by 1 in M_L , the number of Slater determinants in each M_L , M_S box increases only by 1. This is a prerequisite for using the L_{-} plus orthogonality method! This useful simplicity does not occur as you go down a column in M_S .

This convenient situation does not occur for d^3 or f^3 . Why? Because there can be more than one *L*-*S* term of a specified symmetry. For example, for d^2 there are ¹*S*, ³*P*, ¹*D*, ³*F*, ¹*G* terms, but for d^3 there are ²*P*, ⁴*P*, **two** ²*D*, ²*F*, ⁴*F*, ²*G* and ²*H* terms.

S P D F G H I K L = 0, 1, 2, 3, 4, 5, 6, 7

Start in <u>extreme M_L , M_S corner</u> — This generally contains only one Slater determinant

 $L = M_{L_{MAX}}$, $S = M_{S_{MAX}}$ so we have one of the L - S terms

This L-S term	$-L \le M_L \le L$
includes one of each	Ľ
${ m M}_{ m L}$, ${ m M}_{ m S}$ in the range	$-S \le M_s \le S$

This means this L-S term will "use up" the equivalent of one Slater determinant in each $\rm M_L, M_S$ box.

Bookkeeping: cross out one Slater determinant, <u>any one</u>, from each relevant M_L, M_S box.

Now repeat, again starting at the $\underline{remaining\ extreme\ }M_L,M_S$ corner

etc.	* 1I	1×13	= 13
	* ³ H	3×11	= 33
	$* {}^{1}G$	1×9	= 9
	* ³ F	3×7	= 21
	* 1D	1×5	= 5
	* ³ P	3×3	= 9
	* ^{1}S	1×1	= 1
			91

as required! [It is a good idea to use this total degeneracy of the configuration as a check.]

Since there is only one Slater determinant in the $M_L = 5$, $M_S = 1$ box, generate all triplets by repeated application of $L_to || 3 \alpha 2 \alpha ||$ (plus orthogonality) and generate all singlets by L_o on

 $\|3 \alpha 3 \beta\|$. Many orthogonalization steps are needed! Especially for singlets. Need to use **S**_ also.

Before illustrating the ladders plus orthogonality method, it is useful to show some patterns and list some valuable tricks.

The most difficult cases are $(n\ell)^m$ where $m = 2, 3, \dots 2\ell$.

Easy to combine $n\ell$ with $n'\ell'$ because no need for special bookkeeping.

ℓ	$(n\ell)^2$	$(n\ell)^3$
S	^{1}S	
p	$^{1}D, ^{3}P, ^{1}S$	${}^{4}S, {}^{2}D, {}^{2}P$
d	¹ G, ³ F, ¹ D, ³ P, ¹ S	² H, ² G, ² F, ⁴ F, ² D(2), ⁴ P, ² P
f	¹ I, ³ H, ¹ G, ³ F, ¹ D, ³ P, ¹ S	
	A simple, memorable pattern	Rather complicated

Get the same L-S states for 2 and 3 "holes" (e.g. $p^4 \leftrightarrow p^2$, $d^3 \leftrightarrow d^7$) instead of electrons.

Also
$$(n\ell)^2 n'\ell' \rightarrow [n\ell^{2} 2S+1L] \otimes (2\ell') = (2S+2, \text{ and } 2S)(L+\ell', L+\ell'-1, \cdots |L-\ell'|)$$

Simple vector coupling of the $n'\ell'$ electron to the two-electron $n\ell^{2} {}^{2S+1}L$ term. No Pauli exclusion because $n'\ell'$ is distinguished from $n\ell$.

When the e⁻ are in distinct subshells (different values of ℓ and *n*), there is no need to be as careful about the exclusion principle.

Ladders plus Orthogonality Method

f² example Start with 2 extreme <u>UNIQUE</u> states 1. $|{}^{3}HM_{L} = 5, M_{s} = 1\rangle = ||3\alpha 2\alpha||$

Use this to generate all triplet states by applying L_ repeatedly and using orthogonality when necessary. Note that # of determinants in each $M_L, M_S=1$ box increases no faster than in steps of 1.

To get to ${}^{3}P$, must not only apply orthogonality several times, but must follow each L state down to the $M_{L} = 1$ box!

2. To get singlets, start with the unique $|{}^{1}I M_{L} = 6$, $M_{s} = 0$ state.

Again, as L_ takes us to successively lower-M_L boxes, # of determinants increases in steps of 1. But some of these steps are due to triplets with $M_S = 0$. Need to step triplets down into $M_S = 0$ territory using S_ once. Lots more orthogonality steps, lots more trails being followed. AWFUL, but do-able.

Nonlecture

$$\begin{vmatrix} {}^{3}\mathrm{H} \ M_{L}M_{S} \end{vmatrix} = \mathbf{L}_{-} \begin{vmatrix} {}^{3}\mathrm{H} \ 51 \end{vmatrix} = \sum_{i} \ell_{i^{-}} ||3\alpha 2\alpha|| \qquad 0$$

$$\hbar [5 \cdot 6 - 5 \cdot 4]^{1/2} \begin{vmatrix} {}^{3}\mathrm{H} \ 41 \end{vmatrix} = \hbar [3 \cdot 4 - 3 \cdot 2]^{1/2} ||2\alpha 2\alpha|| + \hbar (3 \cdot 4 - 2 \cdot 1)^{1/2} ||3\alpha 1\alpha||$$

$$\begin{vmatrix} {}^{3}\mathrm{H} \ 41 \end{vmatrix} = ||3\alpha 1\alpha|| \qquad \text{big surprise!}$$

$$\mathbf{L}_{-} \begin{vmatrix} {}^{3}\mathrm{H} \ 41 \end{vmatrix} = \Sigma \ell_{i^{-}} ||3\alpha 1\alpha||$$

$$\begin{vmatrix} {}^{3}\mathrm{H} \ 31 \end{Bmatrix} = (1/3)^{1/2} ||2\alpha 1\alpha|| + (2/3)^{1/2} ||3\alpha 0\alpha||$$

orthogonality:

$$\left|{}^{3}\mathrm{F}\,31\right\rangle = \left(\frac{2}{3}\right)^{1/2} \left\|2\alpha 1\alpha\right\| - \left(\frac{1}{3}\right)^{1/2} \left\|3\alpha 0\alpha\right\|$$

and so on, to get all $|^{3}L L 1$ many-electron functions

3

 \mathbf{S}

3

(6)

 $M_s = 0$ Try a detour into singlet territory, and then check for self-consistency.

$$\mathbf{S}_{-} \begin{vmatrix} {}^{3}\mathbf{F} & 31 \end{vmatrix} = \sum_{i} \mathbf{s}_{i} \left[\left(\frac{2}{3} \right)^{1/2} ||2\alpha 1\alpha|| - \left(\frac{1}{3} \right)^{1/2} ||3\alpha 0\alpha|| \right] \quad \text{(by orthogonality with)} |{}^{3}\mathbf{H} & 31 \rangle$$

$$\hbar \left[1 \cdot 2 - 1 \cdot 0 \right]^{1/2} \begin{vmatrix} {}^{3}\mathbf{F} & 30 \end{vmatrix} = \hbar \left[\left(\frac{2}{3} \right)^{1/2} \left[\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) \right]^{1/2} \left(||2\beta 1\alpha|| + ||2\alpha 1\beta|| \right) - \left(\frac{1}{3} \right)^{1/2} \left[1 \right]^{1/2} \left(||\beta\beta 0\alpha|| + ||3\alpha 0\beta|| \right) \right] \qquad \text{this factor is always 1 or 0}$$

$$\mathbf{F} 30 \rangle = \left(\frac{1}{3} \right)^{1/2} \left(||2\beta 1\alpha|| + ||2\alpha 1\beta|| \right) - \left(\frac{1}{6} \right)^{1/2} \left(||\beta\beta 0\alpha|| + ||3\alpha 0\beta|| \right)$$

$$||^{3}\mathbf{H} 31 \rangle = \sum_{i} \mathbf{s}_{i} \left[\left(\frac{1}{3} \right)^{1/2} ||2\alpha 1\alpha|| + \left(\frac{2}{3} \right)^{1/2} ||3\alpha 0\alpha|| \right]$$

$$\mathbf{H} 30 \rangle = \left(\frac{1}{6} \right)^{1/2} \left(||2\beta 1\alpha|| + ||2\alpha 1\beta|| \right) + \left(\frac{1}{3} \right)^{1/2} \left(||\beta\beta 0\alpha|| + ||3\alpha 0\beta|| \right)$$

There are 4 Slater determinants in the $M_L = 3$, $M_S = 0$ box. We can't find the other two singlet linear combinations uniquely without using L_{-} on the extreme singlets.

$$\mathbf{L}_{-} \begin{vmatrix} {}^{1}\mathbf{I} & 5\mathbf{0} \end{vmatrix} = \Sigma \boldsymbol{\ell}_{i^{-}} \left(\frac{1}{2}\right)^{1/2} \left[\left| \left| 3\alpha 2\beta \right| \right| - \left| \left| 3\beta 2\alpha \right| \right| \right]$$

$$|^{1}I 40\rangle = \left(\frac{1}{44}\right)^{1/2} \left[(10)^{1/2} (||3\alpha 1\beta|| - ||3\beta 1\alpha||) + 6^{1/2} (||2\alpha 2\beta|| - ||2\beta 2\alpha||) \right]$$

$$|^{1}I 40\rangle = \left(\frac{5}{22}\right)^{1/2} \left[(||3\alpha 1\beta|| - ||3\beta 1\alpha||) + \left(\frac{6}{11}\right) ||2\alpha 2\beta|| \right]$$

$$|^{3}H 40\rangle = \left(\frac{1}{20}\right)^{1/2} \left[(6)^{1/2} (||2\alpha 2\beta|| + ||2\beta 2\alpha||) + 10^{1/2} (||3\alpha 1\beta|| + ||3\beta 1\alpha||) \right]$$

$$|^{3}H 40\rangle = \left(\frac{1}{2}\right)^{1/2} (||3\alpha 1\beta|| + ||3\beta 1\alpha||)$$

orthogonality

$$|{}^{1}\mathrm{G}\,40\rangle = \left(\frac{3}{11}\right)^{1/2} \left[\left(||3\alpha1\beta|| - ||3\beta1\alpha||\right) - \left(\frac{5}{11}\right)^{1/2} ||2\alpha2\beta||\right]$$

At last we are ready to enter the $\rm M_{L}$ = 3, $\rm M_{S}$ = 0 block!

It is clear that if we apply L_ to $|{}^{3}H | 40\rangle$, we will get the same form that we already derived starting from $|{}^{3}H | 51\rangle$ Instead, let's lower $|{}^{1}I | 40\rangle$.

$$\begin{aligned} \mathbf{L}_{-} | ^{1}\mathbf{I} | 40 \rangle &= \sum_{i} \ell_{i} \left\{ \left(\frac{5}{22} \right)^{1/2} \left[||3\alpha 1\beta|| - ||1\beta 3\alpha|| \right] + \left(\frac{6}{11} \right)^{1/2} ||2\alpha 2\beta|| \right\} \\ | ^{1}\mathbf{I} | 30 \rangle &= (30)^{1/2} \left\{ \left(\frac{5}{22} \right)^{1/2} (6)^{1/2} (||2\alpha 1\beta|| - ||2\beta 1\alpha||) + \left(\frac{5}{22} \right)^{1/2} (12)^{1/2} (||3\alpha 0\beta|| - ||3\beta 0\alpha||) \\ &+ \left(\frac{6}{11} \right)^{1/2} (10)^{1/2} (||2\alpha 1\beta|| - ||2\beta 1\alpha||) \right\} \\ | ^{1}\mathbf{I} | 30 \rangle &= \left[\left(\frac{1}{22} \right)^{1/2} + \left(\frac{4}{22} \right)^{1/2} \right] (||2\alpha 1\beta|| - ||2\beta 1\alpha||) + \left(\frac{2}{22} \right)^{1/2} (||3\alpha 0\beta|| - ||3\beta 0\alpha||) \end{aligned}$$

$$\begin{vmatrix} 1 & 30 \end{vmatrix} = \left(\frac{9}{22}\right)^{1/2} \left(\left\| 2\alpha 1\beta \right\| - \left\| 2\beta 1\alpha \right\| \right) + \left(\frac{2}{22}\right)^{1/2} \left(\left\| 3\alpha 0\beta \right\| - \left\| 3\beta 0\alpha \right\| \right)$$

Finally, by orthogonality:

$$\left| {}^{1}G \quad 30 \right\rangle = -\left(\frac{1}{11}\right)^{1/2} \left(\left\| 2\alpha 1\beta \right\| - \left\| 2\beta 1\alpha \right\| \right) + \left(\frac{9}{22}\right)^{1/2} \left(\left\| 3\alpha 0\beta \right\| - \left\| 3\beta 0\alpha \right\| \right) \right)$$

Does this match what one would get from $\mathbf{L}_{-}|^{1}G 40$?

$$\mathbf{L}_{-}|^{1}\mathbf{G} \ 40 \rangle = \sum_{i} \ell_{i} \left\{ \left(\frac{3}{11} \right)^{1/2} \left[||3\alpha 1\beta|| - ||1\beta 3\alpha|| \right] - \left(\frac{5}{11} \right)^{1/2} ||2\alpha 2\beta|| \right\} \\ |^{1}\mathbf{G} \ 30 \rangle = (8)^{1/2} \left\{ \left(\frac{5}{11} \right)^{1/2} (6)^{1/2} (||2\alpha 1\beta|| - ||2\beta 1\alpha||) + \left(\frac{3}{11} \right)^{1/2} (12)^{1/2} (||3\alpha 0\beta|| - ||3\beta 0\alpha||) - \left(\frac{5}{11} \right)^{1/2} (10)^{1/2} (||2\alpha 1\beta|| - ||2\beta 1\alpha||) \right\} \\ \xrightarrow{\mathbf{IMPORTANT}} \left| {}^{1}\mathbf{G} \ 30 \rangle = -\left(\frac{1}{11} \right)^{1/2} (||2\alpha 1\beta|| - ||2\beta 1\alpha||) + \left(\frac{9}{22} \right)^{1/2} (||3\alpha 0\beta|| - ||3\beta 0\alpha||) \right]$$

$$\mathbf{checks!}$$

End of Non-Lecture

As you see, this ladders plus orthogonality method is extremely laborious. There is a much better way!

** There are several patterns: singlets for $M_{_S} = 0$ always have the form $(\alpha\beta - \beta\alpha)$ and $M_{_S} = 0$ triplets always $(\alpha\beta + \beta\alpha)$.

This can be generalized for any value of S (page 151 of Hélène Lefebvre-Brion-Robert Field Perturbations 2004 book) [Also M. Yamazaki, Sci. Rep. Kanezawa Univ. <u>8</u>, 371 (1963).]

2. Failure and Inconvenience of ladder method

The ladder method is OK when you have a single target $|LM_LSM_s\rangle$ state, especially when it is near an edge of the M_L, M_S box diagram. Essential that # of Slater determinants in each M_LM_S box increases in steps of 1 as you step down in M_L or M_S .

Fails when there are two L-S terms of same L and S in a given configuration. Then we must set up a 2×2 secular equation anyway.

e.g.
$$(nd)^{3} {}^{2}H, {}^{2}G, {}^{2}F, {}^{4}F, {}^{2}D(2), {}^{4}P, {}^{2}P$$

3. L² and S² Matrix Method

Another method is based on constructing \mathbf{L}^2 and \mathbf{S}^2 matrices in the Slater determinantal basis set. <u>This is no cakewalk either</u> (but this is easier)!

Since usually $S_{MAX} \ll L_{MAX}$ for a configuration when using $L^2 + S^2$ matrices method, it is best to start with the S^2 matrix because it is simpler.

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.