5.73

Quiz 22

$\left[\mathbf{L}_{i}, \mathbf{p}_{j}\right]=i \hbar \sum_{k} \varepsilon_{i j k} \mathbf{p}_{k}$
$\left[\mathbf{L}_{i}, \mathbf{p}_{j}\right]=i \hbar \sum \varepsilon_{i j k} \mathbf{p}_{k}$
$\varepsilon_{\text {win }}=\quad+1$ if ijk are in cyclic order (i.e. $x y z, y z x$, or $z x y$)
-1 if ijk are in anti-cyclic order
0 if any index is repeated.
$\mathbf{L}=(\mathbf{q} \times \mathbf{p})=\left(\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ \mathbf{x} & \mathbf{y} & \mathbf{z} \\ \mathbf{p}_{x} & \mathbf{p}_{y} & \mathbf{p}_{z}\end{array}\right)$
A. What are \mathbf{L}_{y} and \mathbf{L}_{z} in terms of $(\mathbf{x}, \mathbf{y}, \mathbf{z})$ and $\left(\mathbf{p}_{x}, \mathbf{p}_{y}, \mathbf{p}_{z}\right)$?
B. Use $\varepsilon_{i j k}$ notation to evaluate $\left[\mathbf{L}_{\mathrm{x}}, \mathbf{x}\right],\left[\mathbf{L}_{\mathrm{x}}, \mathbf{z}\right],\left[\mathbf{L}_{\mathrm{x}}, \mathbf{p}_{\mathrm{x}}\right]$, and $\left[\mathbf{L}_{\mathrm{x}}, \mathbf{p}_{\mathrm{z}}\right]$. $\left[\mathbf{L}_{\mathrm{x}}, \mathbf{x}\right]=$
$\left[\mathbf{L}_{\mathrm{x}}, \mathbf{z}\right]=$
$\left[\mathbf{L}_{\mathrm{x}}, \mathbf{p}_{\mathrm{x}}\right]=$
$\left[\mathbf{L}_{z}, \mathbf{p}_{z}\right]=$
C. Use the results of part B to show that $\left[\mathbf{L}_{x}, \mathbf{L}_{y}\right]=i \hbar \mathbf{L}_{z}$. Recall that $[\mathbf{A}, \mathbf{B C}]=\mathbf{B}[\mathbf{A}, \mathbf{C}]+[\mathbf{A}, \mathbf{B}] \mathbf{C}$.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

