5.73

Quiz 30

1.

The six np spin orbitals, listed in standard order, are: $1 \alpha, 1 \beta, 0 \alpha, 0 \beta,-1 \alpha,-1 \beta$. The number $1,0,-1$ refers to m_{1}, and α, β refers to $m_{S}=1 / 2,-1 / 2$.

Matrix elements of a one-electron operator, $F=\mathbf{f}(\mathbf{i})$, are
$\Delta s o=0\left\langle\left\|a_{1} a_{2}| | F| | a_{a} a_{\|}\right\|\right\rangle=\sum\left\langle a_{\mid}\right| f\left|a_{i}\right\rangle$
$\left.\Delta s o=0\langle | \mathrm{a}_{1} \mathrm{~b}| | \mathrm{F}| | \mathrm{a}_{1} \mathrm{a}_{2} \|\right\rangle=\langle\mathrm{b}| \mathrm{f}\left|\mathrm{a}_{2}\right\rangle$
$\langle\mathrm{p} 1| \ell_{+}|\mathrm{p} 0\rangle=\langle\mathrm{p} 0| \ell_{+}|\mathrm{p}-1\rangle=2^{1 / 2} ;\langle\alpha| \mathbf{s}_{+}|\beta\rangle=1$
A. $\quad \mathbf{F} \equiv \sum_{i}-\gamma B_{z}\left(\ell_{z i}+2 \mathbf{s}_{z i}\right) . \quad$ Evaluate $\langle\mathbf{F}\rangle$ for $\psi=\|1 \alpha 0 \beta\|$.
B. $\quad \mathbf{F} \equiv \mathbf{J}_{+}=\sum_{i}\left(\ell_{+i}+\mathbf{s}_{+i}\right) . \quad$ Evaluate $\langle ||1 \alpha 0 \alpha|\|\mathbf{F}\||1 \alpha-1 \alpha \|\rangle$.
[HINT: \mathbf{F} is a sum, not a product, of two one-electron operators.]
C. $\quad \mathbf{F}=\sum_{i} \ell_{i} \cdot \mathbf{s}_{i}=\sum_{i}\left[\ell_{z i} \mathbf{s}_{z i}+\frac{1}{2}\left(\ell_{+i} \mathbf{s}_{-i}+\ell_{-i} \mathbf{s}_{+i}\right)\right]$.

Evaluate $\langle ||1 \alpha 0 \beta| \| \mathbf{F}| ||\alpha-1 \alpha|| \rangle$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

