5.73

Quiz 29 ANSWERS

1.

 $E_{n\ell} = -\Re/(n - \delta_{\ell})^2$ n is the principal quantum number and δ_{ℓ} is the quantum defect

A. Explain, based on the effective radial charge distribution of the ion-core, $Z^{\text{eff}}(r) [Z^{\text{eff}}(r) \text{ is } Z \text{ at } r = 0 \text{ and } 1 \text{ at } r = \infty]$, why the quantum defect, δ_{ℓ} , is positive.

As the electron approaches the nucleus, it sees a monotonically increasing Z^{eff} . If Z^{eff} were constant at 1.00, then the quantum defect would be zero. But as Z^{eff} increases above 1, the electron is stabilized relative to the corresponding orbital on Hydrogen. Since $\delta_{\ell} > 0$ corresponds to stabilization (lowering of $E_{n_{\ell}}$), the monotonically increasing Z^{eff} as $r \to 0$ is consistent with $\delta_{\ell} > 0$.

B. Predict, based on $Z^{\text{eff}}(r)$ and the centrifugal term in the potential $\left[\ell(\ell+1)/2\mu r^2\right]$, whether δ_s is larger or smaller than δ_p . Explain. The centrifugal barrier keeps the *p* electron at a larger distance from the nucleus, thus the *p* orbital sees a smaller $\langle Z^{\text{eff}}(r) \rangle_{np}$ than $\langle Z^{\text{eff}}(r) \rangle_{ns}$. This

leads to a larger stabilization, hence a larger positive δ_{ℓ} for s than p.

C. If
$$\overline{E}_n = (E_{ns} + E_{np})/2$$
 and $\Delta = \delta_s - \delta_p$, derive $\Delta E_n \equiv (E_{np} - E_{ns}) \approx \frac{23\Delta\Delta}{n^3}$

$$\Delta E_n = E_{np} - E_{ns} = -\frac{\Re}{\left(n - \delta_p\right)^2} + \frac{\Re}{\left(n - \delta_s\right)^2} = \frac{\Re}{n^2} \left[\left(1 - \frac{\delta_s}{n}\right)^{-2} - \left(1 - \frac{\delta_p}{n}\right)^{-2} \right]$$
$$= \frac{\Re}{n^2} \left[\left(1 + \frac{2\delta_s}{n}\right) - \left(1 + \frac{2\delta_p}{n}\right) \right]$$
$$= \frac{\Re}{n^2} \left[\frac{2\delta_s - 2\delta_p}{n} \right] = \frac{2\Delta\Re}{n^3}$$

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.