Non-Lecture

Review of Free Electromagnetic Field

Maxwell's Equations (SI):
(1) $\bar{\nabla} \cdot \bar{B}=0$
(2) $\bar{\nabla} \cdot \bar{E}=\rho / \epsilon_{0}$
(3) $\bar{\nabla} \times \bar{E}=-\frac{\partial \bar{B}}{\partial t}$
(4) $\bar{\nabla} \times \bar{B}=\mu_{0} \bar{J}+\epsilon_{0} \mu_{0} \frac{\partial \bar{E}}{\partial t}$
\bar{E} : electric field; \bar{B} : magnetic field; \bar{J} : current density; ρ : charge density; ϵ_{0} : electrical permittivity; μ_{0} : magnetic permittivity

We are interested in describing \bar{E} and \bar{B} in terms of a scalar and vector potential. This is required for our interaction Hamiltonian.

Generally: A vector field \bar{F} assigns a vector to each point in space, and:
(5) $\bar{\nabla} \cdot \bar{F}=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z} \quad$ is a scalar

For a scalar field ϕ
(6) $\nabla \phi=\frac{\partial \phi}{\partial x} \hat{x}+\frac{\partial \phi}{\partial y} \hat{y}+\frac{\partial \phi}{\partial z} \hat{z} \quad$ is a vector
where $\hat{x}^{2}+\hat{y}^{2}+\hat{z}^{2}=\hat{r}_{\sim}^{2}$ unit vector
Also:

$$
\bar{\nabla} \times \bar{F}=\left|\begin{array}{lll}
\hat{x} & \hat{y} & \hat{z} \tag{7}\\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
$$

Some useful identities from vector calculus are:
(8) $\bar{\nabla} \cdot(\bar{\nabla} \times \bar{F})=0$

$$
\begin{equation*}
\nabla \times(\nabla \phi)=0 \tag{9}
\end{equation*}
$$

(10) $\quad \nabla \times(\bar{\nabla} \times \bar{F})=\bar{\nabla}(\bar{\nabla} \cdot \bar{F})-\bar{\nabla}^{2} \bar{F}$

We now introduce a vector potential $\bar{A}(\bar{r}, t)$ and a scalar potential $\varphi(\bar{r}, t)$, which we will relate to \bar{E} and \bar{B}

Since $\bar{\nabla} \cdot \bar{B}=0$ and $\bar{\nabla}(\bar{\nabla} \times \bar{A})=0$:
(11) $\bar{B}=\bar{\nabla} \times \bar{A}$

Using (3), we have:
$\bar{\nabla} \times \bar{E}=-\bar{\nabla} \times \frac{\partial \bar{A}}{\partial t}$

> or
> $\bar{\nabla} \times\left[\bar{E}+\frac{\partial \bar{A}}{\partial t}\right]=0$

From (9), we see that a scalar product exists with:

or

$$
\begin{equation*}
\bar{E}=\frac{\partial \bar{A}}{\partial t}-\nabla \varphi \tag{14}
\end{equation*}
$$

So we see that the potentials \bar{A} and φ determine the fields \bar{B} and \bar{E} :
(15) $\bar{B}(\bar{r}, t)=\bar{\nabla} \times \bar{A}(\bar{r}, t)$
$\bar{E}(\bar{r}, t)=-\bar{\nabla} \varphi(\bar{r}, t)-\frac{\partial}{\partial t} \bar{A}(\bar{r}, t)$
We are interested in determining the wave equation for \bar{A} and φ. Using (15) and differentiating (16) and substituting into (4):
(17) $\bar{\nabla} \times(\bar{\nabla} \times \bar{A})+\epsilon_{0} \mu_{0}\left(\frac{\partial^{2} \bar{A}}{\partial t^{2}}+\bar{\nabla} \frac{\partial \varphi}{\partial t}\right)=\mu_{0} \bar{J}$

Using (10):
$\left[-\bar{\nabla}^{2} \bar{A}+\epsilon_{0} \mu_{0} \frac{\partial^{2} \bar{A}}{\partial t^{2}}\right]+\bar{\nabla}\left(\bar{\nabla} \cdot \bar{A}+\epsilon_{0} \mu_{0} \frac{\partial \varphi}{\partial t}\right)=\bar{\mu}_{0} \bar{J}$
From (14), we have:
$\bar{\nabla} \cdot \bar{E}=-\frac{\partial \bar{\nabla} \cdot \bar{A}}{\partial t}-\bar{\nabla}^{2} \varphi$
and using (2):
$\frac{-\partial \bar{V} \cdot \bar{A}}{\partial t}-\bar{\nabla}^{2} \varphi=\rho / \epsilon_{0}$
Notice from (15) and (16) that we only need to specify four field components ($A_{x}, A_{y}, A_{z}, \varphi$) to determine all six \bar{E} and \bar{B} components. But \bar{E} and \bar{B} do not uniquely determine \bar{A} and φ. So, we can construct \bar{A} and φ in any number of ways without changing \bar{E} and \bar{B}. Notice that if we change \bar{A} by adding $\bar{\nabla} \chi$ where χ is any function of \bar{r} and t, this won't change $\bar{B}(\nabla \times(\nabla \cdot B)=0)$. It will change E by $\left(-\frac{\partial}{\partial t} \bar{\nabla} \chi\right)$, but we can change φ to $\varphi^{\prime}=\varphi-\frac{\partial \chi}{\partial t}$. Then \bar{E} and \bar{B} will both be unchanged. This property of changing representation (gauge) without changing \bar{E} and \bar{B} is gauge invariance. We can transform between gauges with:

$$
\begin{align*}
& \bar{A}^{\prime}(\bar{r}, t)=\bar{A}(\bar{r}, t)+\bar{\nabla} \cdot \chi(\bar{r}, t) \tag{20}\\
& \varphi^{\prime}(\bar{r}, t)=\varphi(\bar{r}, t)-\frac{\partial}{\partial t} \chi(\bar{r}, t) \tag{21}
\end{align*}
$$

$\overline{\text { gauge }}$
transformation

Up to this point, A^{\prime} and Q are undetermined. Let's choose a χ such that:

$$
\bar{\nabla} \cdot \bar{A}+\epsilon_{0} \mu_{0} \frac{\partial \varphi}{\partial t}=0
$$

Lorentz condition
then from (17):
$-\nabla^{2} \bar{A}+\epsilon_{0} \mu_{0} \frac{\partial^{2} \bar{A}}{\partial t^{2}}=\mu_{0} \bar{J}$
The RHS can be set to zero for no currents.
From (19), we have:
(24) $\epsilon_{0} \mu_{0} \frac{\partial^{2} \varphi}{\partial t^{2}}-\nabla^{2} \varphi=\frac{\rho}{\epsilon_{0}}$

Eqns. (23) and (24) are wave equations for \bar{A} and φ. Within the Lorentz gauge, we can still arbitrarily add another χ (it must only satisfy 22). If we substitute (20) and (21) into (24), we see:

$$
\begin{equation*}
\nabla^{2} \chi-\epsilon_{0} \mu_{0} \frac{\partial^{2} \chi}{\partial t^{2}}=0 \tag{25}
\end{equation*}
$$

So we can make further choices/constraints on \bar{A} and φ as long as it obeys (25).
For a field far from charges and currents, $J=0$ and $\rho=0$.
$-\bar{\nabla}^{2} \bar{A}+\epsilon_{0} \mu_{0} \frac{\partial^{2} \bar{A}}{\partial t^{2}}=0$
$-\bar{\nabla}^{2} \varphi+\epsilon_{0} \mu_{0} \frac{\partial^{2} \varphi}{\partial t^{2}}=0$
We now choose $\varphi=0$ (Coulomb gauge), and from (22) we see:
$\bar{\nabla} \cdot \bar{A}=0$
So, the wave equation for our vector potential is:
$-\bar{\nabla}^{2} \bar{A}+\epsilon_{0} \mu_{0} \frac{\partial^{2} \bar{A}}{\partial t^{2}}=0$
The solutions to this equation are plane waves.

$$
\begin{align*}
\bar{A} & =\bar{A}_{0} \sin (\omega t-\bar{k} \cdot \bar{r}+\alpha) \tag{30}\\
& =\bar{A}_{0} \cos \left(\omega t-\bar{k} \cdot \bar{r}+\alpha^{\prime}\right) \tag{31}
\end{align*} \quad \alpha: \text { phase }
$$

\bar{k} is the wave vector which points along the direction of propagation and has a magnitude:

$$
\begin{equation*}
k^{2}=\omega^{2} \mu_{0} \epsilon_{0}=\omega^{2} / c^{2} \tag{32}
\end{equation*}
$$

Since (28) $\bar{\nabla} \cdot \bar{A}=0$
$-\bar{k} \cdot \bar{A}_{0} \cos (\omega t-\bar{k} \cdot \bar{r}+\alpha)=0$

$$
\therefore \bar{k} \cdot \bar{A}_{0}=0 \quad \bar{k} \perp \bar{A}_{0}
$$

A_{0} is the direction of the potential \rightarrow polarization. From (15) and (16), we see that for $\varphi=0$:

$$
\begin{aligned}
& \bar{E}=-\frac{\partial \bar{A}}{\partial t}=-\omega \bar{A}_{0} \cos (\omega t-\bar{k} \cdot \bar{r}+\alpha) \\
& \bar{B}=\bar{\nabla} \times \bar{A}=-\left(\bar{k} \times \bar{A}_{0}\right) \cos (\omega t-\bar{k} \cdot \bar{r}+\alpha) \\
& \therefore \bar{k} \perp \bar{E} \perp \bar{B}
\end{aligned}
$$

