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MIT Department of Chemistry 
5.74, Spring 2004: Introductory Quantum Mechanics II 
Instructor: Prof. Robert Field 

5.74 RWF Lectures #1 & #2

Point of View 

Isolated (gas phase) molecules: no coherences (intra- or inter-molecular).

At t = 0 sudden perturbation:


“photon pluck” ρρρρ(0) [need matrix elements of µ(Q)] 

visualization of dynamics ρρρρ(t) [need H for evolution] 

H = H(0) + H(1) 

intramolecular coupling terms (not t-dependent) 
initially localized, nonstationary state


What do we need?


pre-pluck initial state: simple, localized in both physical and state space 
nature of pluck: usually very simple 

single orbital 
single oscillator 
single conformer (even if excitation is to energy above the isomerization 

barrier) 

post-pluck dynamics

nature of pluck determines best choice of H(0)


need H = H(0) + H(1) to describe dynamics 

* Reduce H to Heff good for a “short” time 
* transformations between basis sets 
* evaluate matrix elements of Heff and µ(Q) 

Visualize dynamics in reduced dimensionality 

∗ ψ(Q)*ψ(Q) contains too much information

* develop tools to look at individual parts of system — in coordinate and state space 

Detection? 
* how to describe various detection schemes? 
* devise optimal detection schemes 

1st essential tool is Angular Momentum Algebra 

define basis sets for coupled sub-systems

electronic ψ — symmetry in molecular frame, orbitals


rotational ψ — relationship between molecular and lab frame


alternative choices of complete sets of commuting operators

eg. J2L2S2J vs. L2LzS

2Sz
z 

coupled uncoupled 
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reasons for choices of basis set

nature of pluck

hierarchy of terms in H


transformations between basis sets

needed to evaluate matrix elements of different operators


effects of coordinate rotation on basis functions and operators

spherical tensor operators


Wigner-Eckart Theorem 

Let’s begin with a fast review of Angular Momentum 

Angular Momentum 

JM 2 J + 1 M values for each J 
2 , ,J = J ± iJyJ Jz ± x 

1
J = 

2 
(J+ + J− ) realx 

i
J = −  

2 
(J+ − J− ) imaginaryy


i ,
[J J  j ] = ∑ ihε ijk Jk 
k 

J± JM J J + 1) − M M ± 1) ]1 2(= h[ (  1 243
/ JM ± 14 

product of M values 

If [A B] = 0 then A, a b  = ai a bi j  i j  

B a b  = b j a bi j  i j  

(if [A,B] ≠ 0, then it is impossible to define an |aib 〉 basis set. e.g. Jx,Jy)j

2 angular momentum sub-systems, e.g. L and S 

J = L + S 

two choices of basis set 

2 2 2J L  ,S2,J ] [ ,[ ,  L L  ,S2,S ]z z z 

LSJM J LM L SM S 

coupled uncoupled 
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trade J for ML (MS = MJ – ML)


operators Lz, L±, Sz, S± destroy J quantum number (coupled basis destroyed)

(not commute with J2)


operators L±, S±, J± destroy ML, MS, MJ (both bases destroyed)


example of incompatible terms in H


special case valid only
= ∑ ξ( )ll ⋅ → ζ(NLS)L SHSO ri i si ⋅ 
for ∆L = ∆S = 0 

H 
i 

matrix elementsZeeman = B µ (L + 2S )z 0 z z 

1.4 MHz/Gauss 

note that HSO and HZeeman are incompatible because 

[ ,  ⋅ 
2 + −  − + )L L  S] = h (L S − L Sz 

[ ,  ⋅ 
2 − +  + − )S L  S] = h (L S − L Sz 

(note that if Hz were ∝ (L  + Sz), the HSO and HZeeman simplified operators would commute and bothz

would be diagonal in |LSJMJ〉.) 

So we have to choose between coupled and uncoupled basis sets.


Which do we choose? The one that gives a better representation of the spectrum and dynamics


H

without considering off-diagonal matrix elements! (You are free to choose either basis, but one is

always more convenient for specific experiment.)


SO lifts degeneracy of J’s in L–S state


J L= + S 
2 S2 ⋅J2 = L + + 2L S


L S  = 2 h[ ( 1) ( 1) (

H

⋅ 1 J J + − L L + − S S + 1)] 
Zeeman lifts degeneracy of MJ’s within J. 

( 1) ( 1) (J J  + + S S + − L L  + 1)
= µ B M J g = 1 +EM J 

gJ 0 z J 2J J  + 1)( 
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coupled limit uncoupled limit 

H  = HSO H(0) = HZeeman(0)

off-diagonal HSO 

matrix elements 
∆MJ = 0 
∆ML = -∆MS = ±1 
∆L = 0,±1 
∆S = 0,±1 

H(1) = HZeeman H(1) = HSO 

Landé interval rule. 
Patterns in both frequency and time domain get destroyed. Assignments are based on recognition of

patterns. Selection rules for transitions get bent.

Extra lines, intensity anomalies (borrowing, interference).

We must do extra work to describe both ρ(0) and ρ(t).


Limiting cases are nice 

simple patterns (sometimes too simple to determine all coupling constants — restrictive 
selection rules) 
easy to compute matrix elements 
dynamics is often simple with periodic grand recurrences 

Deviations from limiting cases 
terms that can no longer be ignored have matrix elements that are difficult or tedious to 
evaluate. Large Heff matrix must be diagonalized to describe dynamics. 

Atoms 

lcouple n m s  m  of each e– to make many-e– L–S–J state of atomi i  l i i si 

electron orbital 

θ φ, θ φlm
l = Y

l
(  ,  )  spherical polar coordinatesml 

only one kind of coordinate system: origin at nucleus, z-axis specified in laboratory 



1-5 5.74 RWF Lectures #1 & #2

N1 N 2electronic configuration: (n l (n l …1 1  ) 2 2 )
individual spin-orbitals are coupled to make L–S–J states 

* Slater determinants 
* matrix elements of 

i j≠ 
rij

∑ 1 

* Gaunt coefficients, Slater-Condon parameters: Coulomb and exchange integrals 

one spin-orbital is plucked by photon — generate perfectly

known superposition of L–S–J eigenstates at t = 0


* explicit time evolution 
* problem set 

/ LECTURE #1 STOPS HERE 

Coupled vs. Uncoupled Representations 
nLSJM J nLM L SM S 

2 basis sets have same dimensionality 
)(  Uncoupled (2L + 1  2  S + 1) 

L S+ 
1)Coupled ∑ (2J + = (2 L + 1)(2S + 1) 

= | –  S|J L  

⇑ 
triangle rule L S  J− ≤ ≤  L + S 

What is happening here? ML,MS being replaced by J,MJ = ML + MS 

actually only one quantum number is being replaced by one quantum number 

convenient notation (especially for more complicated cases) 

LSM J ← conserved
unitary transformation: UM L =M J −M S  J  ← exchanged, 

This sort of notation is 
useful for working out 

series of transformations 

nLSJM J = ∑ nLM SM S nLM SM S nLSJM JL L

M L =M J −M S
 completeness 

vector coupling or Clebsch-Gordan coefficient 

L S J L S  /= ∑ nLM SM S −1( )  − +M J (2J + 1)1 2   L  M L M S – M J M L =M J −M S 

LSM J nLM SM S = ∑ UM L =M J −M S  J  L  ,
M L =M J −M S replaced constructed 
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Inverse transformation (unitary, so U–1 = U†, but U is real. Uij 
1− = U ji ) 

L S+ 
nLM SM S nLSJM J nLSJM J nLM L SM= ∑L S 

J L|= −S| 

L S   L S J + 
/L S  1 1 2nLSJM J = M L + M −1( )  − +M J (2J + )  = ∑ S 

J L   M L M S – M J |= −S| 

L S+ 
LSM J nLSJM J = M L + M=

replaced 

∑ UJ M L =M J −M S, S 
J L|= −S|


constructed


General properties of 3-j coefficients 

j3 = j1 + j2 

( )  j1 − +m3 / 1 2 j3 
j m  j m  j m  ≡ −1 j2 (2 j3 + 1)1 2  

 j j 
1 1 2 2 3 3  m1 m2 −m3 

This is –m3 so that sum of bottom 
row = 0 

special 

m1 + m2 = m3 

Be careful writing in opposite direction 

j2 
 j1 j2 j3  

( )  j1 − −m3 /  ≡ −1 (2 j + 1)−1 2  j m j − m33 1 1  j2 m2 3 m1 m2 m3 

special properties: 

1. even permutation of columns: +1 

− j + + j3 

− 
odd permutation of columns: ( ) 1 j2


j + + j

1 

32. reverse sign of all 3 arguments in bottom row: ( ) 1 j2 

Suppose one has j3 = j1 – j2 e.g. S = J – L 
must reverse sign of ML in 3-j 

( )  − +  1 1 2  J L S  

1 

/nJM LM L SM S ≡ −1 J L M S (2S + )   [note sum MJ – ML – MS = 0]J  M J −M L −M S 
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Matrix Elements of H 

H is a sum of 2 parts, one easily evaluated in coupled basis and another easily evaluated in uncoupled basis 

H = H(1) (uncoupled) + H(2)(coupled) 

Must evaluate all of H in some basis set. Choose uncoupled. 

1 †H(uncoupled) = H( )(uncoupled) + T H( )(coupled)T2 
+L S  

LM SM S LSJM J LSJM J LM L = M J − M SM S = ∑L 4 S 
| 1 244444 3444444= −S|J L  

, TJ M L =M J −M S 

Want matrix elements of H(2): 

†[T H( ) coupled)T]2 
LM L =M J −M S SM S ,L M L = ′ − ′ ′ ′′ ′ M J M S S M S 

+ ′+L S  L S  ′ 
LM L = M J − M SM S LSJM J = ∑ ∑ S 

= −S| J ′= ′−S ′|J L  |L| 

× H 2 L S J M J L M L M  S M S ′ ′ ′ ′  ′ ′ = M J ′ − ′ ′ ′  ′ ′ ′ ′( )LSJM J ,L S J M SJ 

+ ′+L S  L S  ′ 
( )L ++L S  /= ∑ ∑ −1 ′− −S ′+M J +M J ′ [(2J + 1 2J ′ + 1)])( 1 2  

J L|= −S| J ′= |L ′−S ′| 

 L S J   L ′ S′ J ′  
×    2 ′ ′ ′ ′  J M J − M S M S −M J   M ′ − M S ′ M S ′ −M J ′


H( )LSJM J ,L S J M 

J 

alternatively, might want H(coupled). Need TH(1)(uncoupled)T† 

S+ ≤L M J ′ +S ′≤L ′ 
1 †[TH( ) uncoupled)T ] = 

M J 

∑ ∑′ ′ ′ ′  
S

LSJM J ,L S J M J M L =M J − ≥− L M L ′ =M J ′ −S ′≥− L ′ 

(or, if S > L, for MS = MJ – L ≥ –S to MS = MJ + L ≤ S) 
M J 1 2( )L L  ′− −S ′+M J + ′ /−1 + S [(2J + 1) 2J ′ + 1)]


 L S J   L ′ S′ J ′ 

1×  −M J 

  M J ′ − M ′ M ′ −M J ′ 
H( )LM L SM ,L M L S M S ′ ′ ′ ′  S M J − M S M S S S 
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Other kinds of useful transformations 

3-j are good to go from coupled↔uncoupled: trade J for ML or MS 

6-j and 9-j are useful to go between different coupled basis set: trade one intermediate angular momentum 
magnitude for another 

Suppose you have 3 nonzero sub-system angular momenta 

s, llll, and I (nuclear spin) 

H = HSO + Hmhfs Hmhfs = aI·j 

llll + s = j (llll + s)2 = j2 llll ·s = 1 
2[j(j+1) – l (l +1) – s(s+1)] 

j + I = F (j + I)2 = F2 j·I = 1 
2 [F(F+1) – j(j+1) – I(I+1)] 

interval rules 
assignment 
recurrent dynamics 
simple patterns when |ζ| >> |a|. Different kind of simple patterns when |a| >> |ζ|. 

137Ba sd 1,3D → s1,l1 = 0, s2, l2 = 2, I = 3/2 

4 nonzero sub-system angular momenta! How do we transform between different ways of coupling these 
angular momenta? 



1-9 5.74 RWF Lectures #1 & #2

6-j 

3 fundamental angular momenta: a, b, c 

3 possible “intermediate” angular momenta: e f g 

a + b = e

a + c = f

b + c = g


1 total angular momentum: F (my notation is different from that in Brown and Carrington) 

e.g. llll + s = j OR s + I = G 
j + I = F G + llll = F 

(HSO >> Hhfs) (Hhfs >> HSO) 
usual except for L = 0 states high Rydberg states of many-e – atoms with 

one e – in valence s-orbital 

(( , )  ,  )a b e c FM F (a,( , ) )b c g FM [(2e + 1 2g + 1)]1 2 1 a b c F  a b  
)( / ( ) + +  +  

e 
= ∑ F c F gg   

LHS: Couple a + b to make e, couple e + c to make F. RHS: couple b + c to make g, couple g + a to make 
F.

6-j is independent of MF. Projection quantum number defined for only total, F. To define a different

projection quantum number instead of MF, must perform coupled → uncoupled transformations followed by


uncoupled to coupled transformations. 

6-j invariant under interchange of any 2 columns and upper and lower arguments of each of any 2 columns. 

6-j can be expressed as product of 4 3-j’s. 

9-j 

4 fundamental angular momenta: a, b, c, d 
many possible intermediate angular momenta. 

a b e   
/ ((a d  g  b  c  h  i, ) ,( , ) ) = ∑ [(2e + 1)(2 f + 1)(2g + 1)(2h + 1)]1 2  

d c  f   ((a b  e  d  c f  i, ) ,( , ) )
g h  i  

LHS: a + d = g, b + c = h, g + h = i 
RHS: a + b = e, d + c = f, e + f = i 

multiply by (–1)P (P is sum of all 9 arguments) 
upon exchange of any 2 rows or columns 

9-j unchanged by even permutation (123→231) of rows or columns or reflection about either diagonal 
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If one argument of 9-j is 0, reduces to a 6-j. 

Now go to the diatomic molecules 

electronic wavefunction 
rotational wavefunction 

two coordinate systems! Laboratory-fixed and molecule (body)-fixed. 

three angular momentum sub-systems 

LM L SM S RM R total orbital, total spin, nuclear rotation 

or more if we have Rydberg states. But L is never defined because a molecule is not spherical. We get Λ 
but not L! 

R nuclear rotation 

N+ = R + Λ+ k̂ total angular momentum of ion-core exclusive of electron spin 

Λ+ is L+ projection of L+ on bond axis (z)z 

llll

N = N+ + llllz total angular momentum exclusive of electron spin 

z projection of Rydberg e– orbital angular momentum on z-axis 

J = N + S total angular momentum 

S

R = J – L – S 
S total spin 

+ spin of ion-core. 

Many angular momenta. Many coupling schemes. 

– Watson's idea: (ion - core)(Rydberg e ) totals 

+Hund's coupling cases: a, b, c, d, e or ( )a b

, H

, for example. 

ROTHierarchy of Σ1 rij , H
SO . 


