5.74 RWF Lectures \#1 \& \#2

Point of View

Isolated (gas phase) molecules: no coherences (intra- or inter-molecular).
At $t=0$ sudden perturbation:

"photon pluck"	$\boldsymbol{\rho}(0)$ [need matrix elements of $\mu(\mathbf{Q})$]
visualization of dynamics	$\boldsymbol{\rho}(\mathrm{t})$ [need \mathbf{H} for evolution]

$$
\mathbf{H}={\underset{\sim}{\mathbf{H}^{(0)}}+\underbrace{\mathbf{H}^{(1)}}_{\text {initially localized, nonstationary state }} \text { intramolecular coupling terms (not t-dependent) }}_{\text {int }}
$$

What do we need?
pre-pluck initial state: simple, localized in both physical and state space
nature of pluck: usually very simple
single orbital
single oscillator
single conformer (even if excitation is to energy above the isomerization barrier)
post-pluck dynamics
nature of pluck determines best choice of $\mathbf{H}^{(0)}$
need $\mathbf{H}=\mathbf{H}^{(0)}+\mathbf{H}^{(1)}$ to describe dynamics

* Reduce \mathbf{H} to $\mathbf{H}^{\text {eff }} \quad$ good for a "short" time
* transformations between basis sets
* evaluate matrix elements of $\mathbf{H}^{\text {eff }}$ and $\boldsymbol{\mu}(\mathbf{Q})$

Visualize dynamics in reduced dimensionality

* $\psi(\mathbf{Q})^{*} \psi(\mathbf{Q})$ contains too much information
* develop tools to look at individual parts of system - in coordinate and state space

Detection?

* how to describe various detection schemes?
* devise optimal detection schemes

1st essential tool is Angular Momentum Algebra
define basis sets for coupled sub-systems
electronic ψ - symmetry in molecular frame, orbitals
rotational ψ - relationship between molecular and lab frame
alternative choices of complete sets of commuting operators
eg. $J^{2} L^{2} S^{2} J_{z} \quad$ vs. $\quad L^{2} L_{z} S^{2} S_{z}$ coupled uncoupled
reasons for choices of basis set
nature of pluck
hierarchy of terms in \mathbf{H}
transformations between basis sets
needed to evaluate matrix elements of different operators
effects of coordinate rotation on basis functions and operators
spherical tensor operators

Wigner-Eckart Theorem

Let's begin with a fast review of Angular Momentum
Angular Momentum

$$
\begin{aligned}
|J M\rangle & 2 J+1 M \text { values for each } J \\
\mathbf{J}^{2}, \mathbf{J}_{z}, \mathbf{J}_{ \pm} & =\mathbf{J}_{x} \pm i \mathbf{J}_{y} \\
\mathbf{J}_{x} & =\frac{1}{2}\left(\mathbf{J}_{+}+\mathbf{J}_{-}\right) \text {real } \\
\mathbf{J}_{y} & =-\frac{i}{2}\left(\mathbf{J}_{+}-\mathbf{J}_{-}\right) \text {imaginary } \\
{\left[\mathbf{J}_{i}, \mathbf{J}_{j}\right] } & =\sum_{k} i \hbar \varepsilon_{i j k} J_{k} \\
\mathbf{J}_{ \pm}|J M\rangle & =\hbar[J(J+1)-\underbrace{M(M \pm 1)}_{\text {product of } M \text { values }}]^{1 / 2}|J M \pm 1\rangle
\end{aligned}
$$

If $[\mathbf{A}, \mathbf{B}]=0$ then $\quad \mathbf{A}\left|a_{i} b_{j}\right\rangle=a_{i}\left|a_{i} b_{j}\right\rangle$

$$
\mathbf{B}\left|a_{i} b_{j}\right\rangle=b_{j}\left|a_{i} b_{j}\right\rangle
$$

(if $[\mathbf{A}, \mathbf{B}] \neq 0$, then it is impossible to define an $\left|a_{i} b_{j}\right\rangle$ basis set. e.g. $\mathbf{J}_{x}, \mathbf{J}_{y}$)
$\underline{2}$ angular momentum sub-systems, e.g. \mathbf{L} and \mathbf{S}

$$
\mathbf{J}=\mathbf{L}+\mathbf{S}
$$

two choices of basis set

$\left[\mathbf{J}^{2}, \mathbf{L}^{2}, \mathbf{S}^{2}, \mathbf{J}_{z}\right]$	$\left[\mathbf{L}^{2}, \mathbf{L}_{z}, \mathbf{S}^{2}, \mathbf{S}_{z}\right]$
$\left\|L S J M_{J}\right\rangle$	$\left\|L M_{L} S M_{S}\right\rangle$
coupled	uncoupled

trade J for $M_{L}\left(M_{S}=M_{J}-M_{L}\right)$
operators $\mathbf{L}_{z}, \mathbf{L}_{ \pm}, \mathbf{S}_{z}, \mathbf{S}_{ \pm}$destroy J quantum number (coupled basis destroyed)
(not commute with \mathbf{J}^{2})
operators $\mathbf{L}_{ \pm}, \mathbf{S}_{ \pm}, \mathbf{J}_{ \pm}$destroy $M_{L}, M_{S}, M_{J} \quad$ (both bases destroyed)
example of incompatible terms in \mathbf{H}

$$
\begin{aligned}
\mathbf{H}^{\mathrm{SO}} & =\sum_{\mathrm{i}} \xi\left(r_{i}\right) \ell_{i} \cdot \mathbf{s}_{i} \rightarrow \zeta(N L S) \mathbf{L} \cdot \mathbf{S} \quad \\
\mathbf{H}^{\text {Zeeman }} & =B_{z} \mu_{0} \mu_{0}\left(\mathbf{L}_{z}+2 \mathbf{S}_{z}\right)
\end{aligned} \quad\left(\begin{array}{c}
\text { special case valid only } \\
\text { for } \Delta L=\Delta S=0 \\
\text { matrix elements }
\end{array}\right)
$$

note that $\mathbf{H}^{\text {sO }}$ and $\mathbf{H}^{\text {Zeeman }}$ are incompatible because

$$
\begin{aligned}
& {\left[\mathbf{L}_{z}, \mathbf{L} \cdot \mathbf{S}\right]=\frac{\hbar}{2}\left(\mathbf{L}_{+} \mathbf{S}_{-}-\mathbf{L}_{-} \mathbf{S}_{+}\right)} \\
& {\left[\mathbf{S}_{z}, \mathbf{L} \cdot \mathbf{S}\right]=\frac{\hbar}{2}\left(\mathbf{L}_{-} \mathbf{S}_{+}-\mathbf{L}_{+} \mathbf{S}_{-}\right)}
\end{aligned}
$$

(note that if \mathbf{H}^{z} were $\propto\left(\mathbf{L}_{z}+\mathbf{S}_{z}\right)$, the $\mathbf{H}^{\text {SO }}$ and $\mathbf{H}^{\text {Zeeman }}$ simplified operators would commute and both would be diagonal in $\left|L S J M_{J}\right\rangle^{\prime}$.)

So we have to choose between coupled and uncoupled basis sets.
Which do we choose? The one that gives a better representation of the spectrum and dynamics without considering off-diagonal matrix elements! (You are free to choose either basis, but one is always more convenient for specific experiment.)
$\mathbf{H}^{\text {SO }}$ lifts degeneracy of J 's in $L-S$ state

$$
\begin{aligned}
\mathbf{J} & =\mathbf{L}+\mathbf{S} \\
\mathbf{J}^{2} & =\mathbf{L}^{2}+\mathbf{S}^{2}+2 \mathbf{L} \cdot \mathbf{S} \\
\mathbf{L} \cdot \mathbf{S} & =\frac{1}{2} \hbar[\mathbf{J}(\mathbf{J}+1)-\mathbf{L}(\mathbf{L}+1)-\mathbf{S}(\mathbf{S}+1)]
\end{aligned}
$$

$\mathbf{H}^{\text {Zeeman }}$ lifts degeneracy of M_{J} 's within J.

$$
E_{M_{J}}=g_{J} \mu_{0} B_{z} M_{J} \quad g_{J}=1+\frac{J(J+1)+S(S+1)-L(L+1)}{2 J(J+1)}
$$

coupled limit

uncoupled limit

> off-diagonal $\mathbf{H}^{\text {so }}$
> matrix elements
> $\Delta M_{J}=0$
> $\Delta M_{L}=-\Delta M_{S}= \pm 1$
> $\Delta \mathrm{~L}=0, \pm 1$
> $\Delta \mathrm{~S}=0, \pm 1$

Patterns in both frequency and time domain get destroyed. Assignments are based on recognition of patterns. Selection rules for transitions get bent.
Extra lines, intensity anomalies (borrowing, interference).
We must do extra work to describe both $\rho(0)$ and $\rho(t)$.

Limiting cases are nice

simple patterns (sometimes too simple to determine all coupling constants - restrictive selection rules)
easy to compute matrix elements
dynamics is often simple with periodic grand recurrences

Deviations from limiting cases

terms that can no longer be ignored have matrix elements that are difficult or tedious to evaluate. Large $\mathbf{H}^{\text {eff }}$ matrix must be diagonalized to describe dynamics.

Atoms

couple $n_{i} \ell_{i} m_{\ell_{i}} s_{i} m_{s_{i}}$ of each e^{-}to make many-e $\mathrm{e}^{-} L-S-J$ state of atom
electron orbital

$$
\left\langle\theta, \phi \mid \ell m_{\ell}\right\rangle=Y_{\ell m_{\ell}}(\theta, \phi) \quad \text { spherical polar coordinates }
$$

only one kind of coordinate system: origin at nucleus, z-axis specified in laboratory
electronic configuration: $\quad\left(n_{1} \ell_{1}\right)^{N_{1}}\left(n_{2} \ell_{2}\right)^{N_{2}} \ldots$
individual spin-orbitals are coupled to make $L-S-J$ states

* Slater determinants
* matrix elements of $\sum_{i \neq j} 1 / r_{i j}$
* Gaunt coefficients, Slater-Condon parameters: Coulomb and exchange integrals one spin-orbital is plucked by photon - generate perfectly
known superposition of $L-S-J$ eigenstates at $t=0$
* explicit time evolution
* problem set

LECTURE \#1 STOPS HERE

Coupled vs. Uncoupled Representations
$\left|n L S J M_{J}\right\rangle \quad\left|n L M_{L}\right\rangle\left|S M_{S}\right\rangle$
2 basis sets have same dimensionality
Uncoupled $(2 L+1)(2 S+1)$
Coupled $\sum_{\substack{ \\ \\\Uparrow}}^{L+S-S \mid}(2 J+1)=(2 L+1)(2 S+1)$

$$
\text { triangle rule } \quad L-S \leq J \leq L+S
$$

What is happening here? $M_{L} M_{S}$ being replaced by $J, M_{J}=M_{L}+M_{S}$
actually only one quantum number is being replaced by one quantum number convenient notation (especially for more complicated cases)
unitary transformation: $U_{M_{L}=M_{J}-M_{S, J}}^{L S M_{J}} \leftarrow$

$$
\begin{aligned}
& \left.n L S J M_{J}\right\rangle=\sum_{M_{L}=M_{J}-M_{S}} \xrightarrow[\text { completeness }]{\text { vector coupling or Clebsch-Gordan coefficient }} \\
& \left.=\sum_{M_{L}=M_{J}-M_{S}} n L M_{L} S M_{S}\right\rangle(-1)^{L-S+M_{J}}(2 J+1)^{1 / 2}\left(\begin{array}{ccc}
L & S & J \\
M_{L} & M_{S} & -M_{J}
\end{array}\right) \\
& =\sum_{M_{L}=M_{J}-M_{S}} U_{\substack{M_{L}=M_{J}-M_{S, J} \\
\text { replaced }}}^{\left.L S L M_{L} S M_{S}\right\rangle} \text { constructed }
\end{aligned}
$$

Inverse transformation (unitary, so $\mathbf{U}^{-1}=\mathbf{U}^{\dagger}$, but \mathbf{U} is real. $\mathbf{U}_{i j}^{-1}=\mathbf{U}_{j i}$)

$$
\left.\left.\begin{array}{rl}
\left|n L M_{L} S M_{S}\right\rangle & =\sum_{J=|L-S|}^{L+S}\left|n L S J M_{J}\right\rangle\left\langle n L S J M_{J} \mid n L M_{L} S M_{S}\right\rangle \\
& =\sum_{J=|L-S|}^{L+S}\left|n L S J M_{J}=M_{L}+M_{S}\right\rangle(-1)^{L-S+M_{J}}(2 J+1)^{1 / 2}\left(\begin{array}{ccc}
L & S & J \\
M_{L} & M_{S} & -M_{J}
\end{array}\right) \\
& =\sum_{\substack{J=|L-S|}} U_{J}^{L+S}\left\langle M_{L} M_{L}=M_{J}-M_{S}\right. \\
\text { replaced } \\
\text { constructed }
\end{array} n L S J M_{J}=M_{L}+M_{S}\right\rangle\right)
$$

General properties of 3-j coefficients

$j_{3}=j_{l}+j_{2}$
$\langle j_{1} m_{1} j_{2} m_{2} \mid \underbrace{j_{3} m_{3}}_{\text {special }}\rangle \equiv(-1)^{j_{1}-j_{2}+m_{3}}\left(2 j_{3}+1\right)^{1 / 2}\left(\begin{array}{ccc}j_{1} & j_{2} & j_{3} \\ m_{1} & m_{2} & -m_{3}\end{array}\right) \xrightarrow{\substack{\text { This is }-m_{3} \text { so that sum of bottom } \\ \text { row =0 }}}$ $m_{1}+m_{2}=m_{3}$

Be careful writing in opposite direction
$\left(\begin{array}{ccc}j_{1} & j_{2} & j_{3} \\ m_{1} & m_{2} & m_{3}\end{array}\right) \equiv(-1)^{j_{1}-j_{2}-m_{3}}\left(2 j_{3}+1\right)_{\uparrow}^{-1 / 2}\left\langle j_{1} m_{1} j_{2} m_{2} \mid j_{3}-m_{3}\right\rangle$
special properties:

1. even permutation of columns: +1 odd permutation of columns: $(-1)^{j_{1}+j_{2}+j_{3}}$
2. reverse sign of all 3 arguments in bottom row: $(-1)^{j_{1}+j_{2}+j_{3}}$

Suppose one has $\mathbf{j}_{3}=\mathbf{j}_{1}-\mathbf{j}_{2} \quad$ e.g. $\quad \mathbf{S}=\mathbf{J}-\mathbf{L}$ must reverse sign of M_{L} in 3-j
$\left\langle n J M_{J} L M_{L} \mid S M_{S}\right\rangle \equiv(-1)^{J-L+M_{S}}(2 S+1)^{1 / 2}\left(\begin{array}{ccc}J & L & S \\ M_{J} & -M_{L} & -M_{S}\end{array}\right)\left[\right.$ note $\left.\operatorname{sum} M_{\mathrm{J}}-M_{\mathrm{L}}-M_{\mathrm{S}}=0\right]$

Matrix Elements of \mathbf{H}

\mathbf{H} is a sum of 2 parts, one easily evaluated in coupled basis and another easily evaluated in uncoupled basis

$$
\mathbf{H}=\mathbf{H}(1)(\text { uncoupled })+\mathbf{H}(2)(\text { coupled })
$$

Must evaluate all of \mathbf{H} in some basis set. Choose uncoupled.
$\mathbf{H}($ uncoupled $)=\mathbf{H}(1)($ uncoupled $)+\mathbf{T}^{\dagger} \mathbf{H}(2)($ coupled $) \mathbf{T}$

Want matrix elements of $\mathbf{H}(2)$:
$\left[\mathbf{T}^{\mathbf{\dagger}} \mathbf{H}(2) \text { coupled } \mathbf{T}\right]_{L M_{l}=M_{J}-M_{S} S M_{S} L M_{i}=M_{j}^{\prime}-M_{s} s M_{s}}$

$$
\begin{aligned}
& =\sum_{J=|L-S|}^{L+S} \sum_{J^{\prime}=\left|L^{\prime}-S^{\prime}\right|}^{L^{\prime}+S^{\prime}}\left\langle L M_{L}=M_{J}-M_{S} S M_{S} L S J M_{J}\right\rangle \\
& \times \mathbf{H}(2))_{L S J M_{J}, L^{\prime} S^{\prime} J^{\prime} M_{J}^{\prime}}\left\langle L^{\prime} S^{\prime} J^{\prime} M_{J}^{\prime} L^{\prime} M_{L}^{\prime}=M_{J}^{\prime}-M_{S}^{\prime} S^{\prime} M_{S}^{\prime}\right\rangle \\
& =\sum_{J=|L-S|}^{L+S} \sum_{J^{\prime}=\left|L^{\prime}-S^{\prime}\right|}^{L^{\prime}+S^{\prime}}(-1)^{L+L^{\prime}-S-S^{\prime}+M_{J}+M_{J}^{\prime}}\left[(2 J+1)\left(2 J^{\prime}+1\right)\right]^{1 / 2} \\
& \times\left(\begin{array}{ccc}
L & S & J \\
M_{J}-M_{S} & M_{S} & -M_{J}
\end{array}\right)\left(\begin{array}{ccc}
L^{\prime} & S^{\prime} & J^{\prime} \\
M_{J}^{\prime}-M_{S^{\prime}} & M_{S^{\prime}} & -M_{J}^{\prime}
\end{array}\right) \mathbf{H (2) _ { L S J M _ { J } , L ^ { \prime } S ^ { \prime } J ^ { \prime } M _ { J } ^ { \prime } }}
\end{aligned}
$$

alternatively, might want \mathbf{H} (coupled). Need $\mathbf{T H}(1)$ (uncoupled) \mathbf{T}^{\dagger}
$\left[\mathbf{T H}(1) \text { uncoupled) } \mathbf{T}^{\dagger}\right]_{L S J M_{J}, L^{\prime} S^{\prime} J^{\prime} M_{J}^{\prime}}=\sum_{M_{L}=M_{J}-S \geq-L}^{M_{J}+S \leq L} \sum_{M_{L}^{\prime}=M_{J}^{\prime}-S^{\prime} \geq-L^{\prime}}^{M_{J}^{\prime}+S^{\prime} \leq L^{\prime}}$
(or, if $S>L$, for $M_{S}=M_{J}-L \geq-\mathrm{S}$ to $M_{S}=M_{J}+L \leq S$)
$\left.(-1)^{L+L^{\prime}-S-S^{\prime}+M_{J}+M_{J}^{\prime}}\left[(2 J+1) 2 J^{\prime}+1\right)\right]^{1 / 2}$
$\times\left(\begin{array}{ccc}L & S & J \\ M_{J}-M_{S} & M_{S} & -M_{J}\end{array}\right)\left(\begin{array}{ccc}L^{\prime} & S^{\prime} & J^{\prime} \\ M_{J}^{\prime}-M_{S}^{\prime} & M_{S}^{\prime} & -M_{J}^{\prime}\end{array}\right) \mathbf{H}(1)_{L M_{L} S M_{S}, L^{\prime} M_{L}^{\prime} S^{\prime} M_{S}^{\prime}}$

Other kinds of useful transformations
3-j are good to go from coupled \leftrightarrow uncoupled: trade J for M_{L} or M_{S}
6-j and 9-j are useful to go between different coupled basis set: trade one intermediate angular momentum magnitude for another

Suppose you have 3 nonzero sub-system angular momenta
\mathbf{s}, ℓ, and \mathbf{I} (nuclear spin)

$\mathbf{H}=\mathbf{H}^{\mathrm{SO}}+\mathbf{H}^{\mathrm{mhfs}}$	$\mathbf{H}^{\mathrm{mhfs}}=\mathrm{a} \mathbf{I} \cdot \mathbf{j}$	
$\boldsymbol{\ell}+\mathbf{s}=\mathbf{j}$	$(\boldsymbol{\mathbf { j }}+\mathbf{s})^{2}=\mathbf{j}^{2}$	$\boldsymbol{\ell} \cdot \mathbf{s}=\frac{1}{2}[j(j+1)-\ell(\ell+1)-s(s+1)]$
$\mathbf{j}+\mathbf{I}=\mathbf{F}$	$(\mathbf{j}+\mathbf{I})^{2}=\mathbf{F}^{2}$	$\mathbf{j} \cdot \mathbf{I}=\frac{1}{2}[F(F+1)-j(j+1)-I(I+1)]$

patterns

interval rules
assignment
recurrent dynamics
simple patterns when $|\zeta| \gg \mid a l$. Different kind of simple patterns when \mid al $\gg|\zeta|$.
${ }^{137} \mathrm{Ba}$

$$
\mathrm{sd}^{1,3} \mathrm{D} \rightarrow s_{1}, \ell_{1}=0, s_{2}, \ell_{2}=2, I=3 / 2
$$

4 nonzero sub-system angular momenta! How do we transform between different ways of coupling these angular momenta?

6-j

3 fundamental angular momenta: a, b, c
3 possible "intermediate" angular momenta: ef g

$$
\begin{aligned}
& a+b=e \\
& a+c=f \\
& b+c=g
\end{aligned}
$$

1 total angular momentum: F (my notation is different from that in Brown and Carrington)
e.g.

$$
\begin{gathered}
\ell+\mathbf{s}=\mathbf{j} \\
\mathbf{j}+\mathbf{I}=\mathbf{F} \\
\left(\mathbf{H}^{\mathrm{SO}} \gg \mathbf{H}^{\mathrm{hfs}}\right)
\end{gathered}
$$

OR

$$
\begin{gathered}
\boldsymbol{s}+\mathbf{I}=\mathbf{G} \\
\mathbf{G}+\boldsymbol{\ell}=\mathbf{F} \\
\left(\mathbf{H}^{\mathrm{hfs}} \gg \mathbf{H}^{\mathrm{so}}\right)
\end{gathered}
$$

usual except for $L=0$ states
$\left|((a, b) e, c) F M_{F}\right\rangle=\sum_{g}\left|(a,(b, c) g) F M_{F}\right\rangle[(2 e+1)(2 g+1)]^{1 / 2}(1)^{a+b+c+F}\left\{\begin{array}{lll}a & b & e \\ c & F & g\end{array}\right\}$
LHS: Couple $a+b$ to make e, couple $e+c$ to make F. RHS: couple $b+c$ to make g, couple $g+a$ to make F.
6-j is independent of M_{F}. Projection quantum number defined for only total, F. To define a different projection quantum number instead of M_{F}, must perform coupled \rightarrow uncoupled transformations followed by uncoupled to coupled transformations.

6-j invariant under interchange of any 2 columns and upper and lower arguments of each of any 2 columns.
6-j can be expressed as product of $43-\mathrm{j}$'s.
9-j
4 fundamental angular momenta: a, b, c, d many possible intermediate angular momenta.
$|((a, d) g,(b, c) h) i\rangle=\sum[(2 e+1)(2 f+1)(2 g+1)(2 h+1)]^{1 / 2}\left\{\begin{array}{lll}a & b & e \\ d & c & f \\ g & h & i\end{array}\right\}|((a, b) e,(d, c) f) i\rangle$
LHS: $a+d=g, b+c=h, g+h=i$
RHS: $a+b=e, d+c=f, e+f=i$
multiply by $(-1)^{\mathrm{P}} \quad$ (P is sum of all 9 arguments)
upon exchange of any 2 rows or columns
9-j unchanged by even permutation $(123 \rightarrow 231)$ of rows or columns or reflection about either diagonal

If one argument of $9-\mathrm{j}$ is 0 , reduces to a $6-\mathrm{j}$.
Now go to the diatomic molecules
electronic wavefunction
rotational wavefunction
two coordinate systems! Laboratory-fixed and molecule (body)-fixed.
three angular momentum sub-systems
$\left|L M_{L}\right\rangle\left|S M_{S}\right\rangle\left|R M_{R}\right\rangle \quad$ total orbital, total spin, nuclear rotation
or more if we have Rydberg states. But L is never defined because a molecule is not spherical. We get Λ but not L !
\mathbf{R} nuclear rotation
$\mathbf{N}^{+}=\mathbf{R}+\Lambda^{+} \hat{\mathbf{k}} \quad$ total angular momentum of ion-core exclusive of electron spin
Λ^{+}is $\mathbf{L}_{z}^{+} \quad$ projection of L^{+}on bond axis (z)
$\mathbf{N}=\mathbf{N}^{+}+\ell_{z} \quad$ total angular momentum exclusive of electron spin
$\ell_{\mathrm{z}} \quad$ projection of Rydberg e^{-}orbital angular momentum on z -axis
$\mathbf{J}=\mathbf{N}+\mathbf{S} \quad$ total angular momentum
$\mathbf{R}=\mathbf{J}-\mathbf{L}-\mathbf{S}$
$\mathbf{S} \quad$ total spin
$\mathbf{S}^{+} \quad$ spin of ion-core.
Many angular momenta. Many coupling schemes.
Watson's idea: $\quad \mid$ (ion - core $)\left(\right.$ Rydberg $\left.\mathrm{e}^{-}\right)$totals \rangle
Hund's coupling cases: a, b, c, d, e or $\left|\left(a^{+}\right) b\right\rangle$, for example.
Hierarchy of

$$
\Sigma 1 / r_{i j}, \mathbf{H}^{\mathrm{SO}}, \mathbf{H}^{\mathrm{ROT}}
$$

