Motion of Center of Wavepacket

Last time: Discussed experiments to monitor the central quantity

$$
\langle\Psi(t) \mid \Psi(0)\rangle
$$

in Heller's picture: the absorption spectrum, $I(\omega)$, is the FT of the autocorrelation function. $\Psi(0)$ in the autocorrelation function is the ground state, $V_{g}^{\prime \prime}(R)$, vibrational wavefunction $\left|g, v_{g}^{\prime \prime}\right\rangle$ transferred vertically onto the excited state potential, $V_{e}^{\prime}(R)$.

Is there a way to monitor $\langle\Psi(t) \mid \Psi(0)\rangle$ directly in the time domain? Many suggested schemes.

We need tools to examine various excitation/detection experimental schemes.
Excitation at $t=0, \mathbf{E}(0)$
Evolution, $\mathbf{U}(t, 0)=\mathrm{e}^{-\mathrm{iH} t / \hbar}$
Detection, D

$$
\boldsymbol{\rho}(t)=\mathbf{U}(t, 0) \mathbf{E}(0) \boldsymbol{\rho}(0) \mathbf{E}^{\dagger}(0) \mathbf{U}^{\dagger}(t, 0)
$$

Observation: Trace ($\mathbf{D} \boldsymbol{\rho}(t)$)

Consider the simplest 3 level system first

Short excitation pulse

$$
\Psi(t)=\beta|0\rangle e^{-i E_{0} t / \hbar}+\alpha_{1}|1\rangle e^{-i E_{1} t / \hbar}+\alpha_{2}|2\rangle e^{-i E_{2} t / \hbar}
$$

both eigenstates $|1\rangle$ and $|2\rangle$ are bright
$\beta=\left[1-\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}\right]^{1 / 2}$
$\alpha_{\mathrm{i}}=c_{i} \mu_{i 0} \quad c_{i}$ describes the intensity, spectral distribution, phase, and duration of the excitation pulse.
$\mu_{i 0}$ is the electric dipole transition moment

$$
\boldsymbol{\rho}(t)=|\Psi\rangle\langle\Psi|=\left(\begin{array}{ccc}
|\beta|^{2} & \beta \alpha_{1}^{*} e^{-i \omega_{01} t} & \beta \alpha_{2}^{*} e^{-i \omega_{02} t} \\
\beta^{*} \alpha_{1} e^{+i \omega_{01} t} & \left|\alpha_{1}\right|^{2} & \alpha_{2}^{*} \alpha_{1} e^{-i \omega_{12} t} \\
\beta^{*} \alpha_{2} e^{+i \omega_{02} t} & \alpha_{2} \alpha_{1}^{*} e^{+i \omega_{12} t} & \left|\alpha_{2}\right|^{2}
\end{array}\right)
$$

This $\boldsymbol{\rho}(t)$ is obtained by two transformations of $\rho(0)$

$$
\boldsymbol{\rho}(t)=\mathbf{U}(t, 0) \mathbf{E}(0) \boldsymbol{\rho}(0) \mathbf{E}^{\dagger}(0) \mathbf{U}^{\dagger}(t, 0)
$$

$\mathbf{E}(0)$ is the excitation matrix, operating at $t=0$, on $\boldsymbol{\rho}(0)$.

$$
\mathbf{E}(0)=\left(\begin{array}{ccc}
\beta & \alpha_{1}^{*} & \alpha_{2}^{*} \\
\alpha_{1} & 0 & 0 \\
\alpha_{2} & 0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
\mathbf{E}(0) \boldsymbol{p}(0) \mathbf{E}^{\dagger}(0) & =\left(\begin{array}{ccc}
\beta & \alpha_{1}^{*} & \alpha_{2}^{*} \\
\alpha_{1} & 0 & 0 \\
\alpha_{2} & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\beta^{*} & \alpha_{1}^{*} & \alpha_{2}^{*} \\
\alpha_{1} & 0 & 0 \\
\alpha_{2} & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\beta & \alpha_{1}^{*} & \alpha_{2}^{*} \\
\alpha_{1} & 0 & 0 \\
\alpha_{2} & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\beta^{*} & \alpha_{1}^{*} & \alpha_{2}^{*} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
|\beta|^{2} & \beta \alpha_{1}^{*} & \beta \alpha_{2}^{*} \\
\alpha_{1} \beta^{*} & \left|\alpha_{1}\right|^{2} & \alpha_{1} \alpha_{2}^{*} \\
\alpha_{2} \beta^{*} & \alpha_{2} \alpha_{1}^{*} & \left|\alpha_{2}\right|^{2}
\end{array}\right)
\end{aligned}
$$

$\mathbf{U}(t, 0)$ is the time evolution matrix. If $\rho(0)$ is expressed in the eigen-basis

$$
\begin{aligned}
& \mathbf{U}(t, 0)=e^{-i \mathbf{H} t / \hbar}=\left(\begin{array}{ccc}
e^{-i \mathbf{E}_{0} t / \hbar} & 0 & 0 \\
0 & e^{-i \mathbf{E}_{1} t / \hbar} & 0 \\
0 & 0 & e^{-i \mathbf{E}_{2} t / \hbar}
\end{array}\right) \\
& \boldsymbol{\rho}(t)=\mathbf{U}(t, 0) \mathbf{E}(0) \boldsymbol{\rho}(0) \mathbf{E}^{\dagger}(0) \mathbf{U}^{\dagger}(t, 0)=\left(\begin{array}{ccc}
|\beta|^{2} & \beta \alpha_{1}^{*} e^{-i \omega_{01} t} & \beta \alpha_{\alpha_{1}^{*}}^{*} e^{-i \omega_{02} t} \\
\beta^{*} \alpha_{1} e^{+i \omega_{01} t} & \left|\alpha_{1}\right|^{2} & \alpha_{2}^{*} \alpha_{1} e^{-i \omega_{12} t} \\
\beta^{*} \alpha_{2} e^{+i \omega_{02} t} & \alpha_{2} \alpha_{1}^{*} e^{+i \omega_{12} t} & \left|\alpha_{2}\right|^{2}
\end{array}\right)
\end{aligned}
$$

as required from $|\Psi(t)\rangle\langle\Psi(t)|$

If the bright state is not an eigenstate, it is often convenient to set up $\boldsymbol{\rho}(0), \mathbf{E}(0)$, and \mathbf{H} in the zero-order basis set. Then find the transformation that diagonalizes \mathbf{H} and apply it to $\rho_{(0)}^{(0)}$.

$$
\begin{aligned}
\mathbf{T}^{\dagger} \mathbf{H T} & =\left(\begin{array}{ccc}
E_{0} & 0 & 0 \\
0 & E_{1} & 0 \\
0 & 0 & E_{2}
\end{array}\right) \\
\mathbf{T}^{\dagger} \mathbf{\rho}_{(0)}^{(0)} \mathbf{T} & =\boldsymbol{\rho}(0)
\end{aligned}
$$

Now, we have a choice of several detection schemes.
Detection could involve:
(i) modification of a beam of probe radiation;
(ii) detection of emitted radiation through a filter or monochromator.

Let us consider the latter possibility.
Now there are several more possibilities:
(a) the detector is blind to radiation at ω_{10} (and ω_{12});
(b) the detector is sensitive to radiation at both ω_{10} and ω_{20} (but not ω_{12}), and both ω_{10} and ω_{20} radiation are detected with the same phase;
(c) same as (b) but ω_{10} is detected with phase opposite that at ω_{20}.

This could be based on a polarization trick. The $1 \leftarrow 0$ transition is $\Delta \mathrm{M}=0$ (z-polarized) and $2 \leftarrow 0$ is $\Delta \mathrm{M}= \pm 1$ (x or y-polarized). Detection with polarizer at $+\pi / 4$ and $-\pi / 4$ would correspond to cases (b) and (c).

Detection: $\mathbf{I}(t)=$ Trace $(\mathbf{D} \boldsymbol{\rho}(t))$

For detection of radiation in transition back to $|0\rangle$

$$
\mathbf{D}=\sum_{i, j}|i\rangle \mu_{i 0} \mu_{0 j}\langle j|
$$

$\operatorname{Trace}(\mathbf{D} \boldsymbol{\rho}(t))=D_{22} \rho_{22}+D_{11} \rho_{11}+D_{12} \rho_{21}+D_{21} \rho_{12}$

(a) If we set $\mu_{10}=0, \mu_{20} \neq 0 \quad$ (blind to ω_{10})

$$
I(\mathrm{t})=\mathrm{D}_{22} \rho_{22}=\left|\mu_{20}\right|^{2}\left|\alpha_{2}\right|^{2}
$$

If we set $\mu_{20}=0, \mu_{10} \neq 0 \quad$ (blind to ω_{20})

$$
I(t)=\left|\mu_{10}\right|^{2}\left|\alpha_{1}\right|^{2}
$$

(b) If we set $\mu_{10}=\mu_{20}=\mu, \alpha_{1}=\alpha_{2}=\alpha$

$$
\begin{aligned}
I(t) & =\left|\mu_{20}\right|^{2}\left|\alpha_{2}\right|^{2}+\left|\mu_{10}\right|^{2}\left|\alpha_{1}\right|^{2}+\mu_{10} \mu_{02} \alpha_{1}^{*} \alpha_{2} e^{i \omega_{12} t}+\mu_{20} \mu_{01} \alpha_{1} \alpha_{2}^{*} e^{-i \omega_{12} t} \\
& =2|\mu|^{2}|\alpha|^{2}+2|\mu|^{2}|\alpha|^{2} \cos \omega_{12} t \\
& =2|\mu|^{2}|\alpha|^{2}\left[1+\cos \omega_{12} t\right] \quad \text { "phased up" at } t=0
\end{aligned}
$$

Quantum Beats. 100% amplitude, modulation.
(c) if we set $\mu_{10}=-\mu_{20}=\mu, \alpha_{1}=\alpha_{2}=\alpha$

$$
I(t)=2|\mu|^{2}|\alpha|^{2}\left[1-\cos \omega_{12} t\right] \text { "phased out" at } t=0
$$

If, instead of both eigenstates being bright, we excite a system with one bright state and one dark state, at $t=0$ we form $\Psi(0)=\psi_{\text {bright }}=\cos \theta \psi_{1}+\sin \theta \psi_{2}$

Then \mathbf{E} and \mathbf{D} could be expressed in terms of bright states rather than eigenstates. In that case, α_{1} and α_{2} include $\cos \theta$ and $\sin \theta$ factors, and the phase of the Quantum Beats could depend on θ through α_{1}, α_{2}.

Zewail experiment

μ_{00} and $\mu_{11} \neq 0$ in zero-order basis
$\mu_{10}=\mu_{01}=0$ in zero-order basis
because of $\mathrm{H}_{\text {ele0 }} \neq 0$, both $\mathrm{e}+$ and $\mathrm{e}-$ are bright from both g 0 and g 1 .
But e1 is bright from g1 and dark wrt g0 e 0 is bright from g 0 and dark wrt g 1
as a result, detecting at $\omega_{\mathrm{e}+\mathrm{g} 1}$ is phased up at $t=0$ but at $\omega_{\mathrm{e}+, \mathrm{g} 0}$ is phased out at $t=0$. Vice versa for $\omega_{\mathrm{e}-, \mathrm{g} 1}$ and $\omega_{e-, g 0}$.

Figure removed due to copyright reasons.

We can use this $\boldsymbol{\rho}, \mathbf{E}, \mathbf{U}, \mathbf{D}$ formalism to describe much more complicated experiments.

* Another sudden perturbation between $t=0$ and time of detection.
* Detection could be using a beam of coherent radiation. Then one would integrate over t. Off resonance? Spectrally not a simple δ-function.
* Include elements of \mathbf{D} that correspond to detection via $\left|\varepsilon_{\text {molecule }}(t)+\varepsilon_{\text {local oscillator }}(t)\right|^{2}$ cross term.

