MIT Department of Chemistry 5.74, Spring 2004: Introductory Quantum Mechanics II Instructor: Prof. Robert Field

5.74 RWF Lecture #7

7 – 1

Motion of Center of Wavepacket

Last time: Discussed experiments to monitor the central quantity

 $\langle \Psi(t) | \Psi(0) \rangle$

in Heller's picture: the absorption spectrum, $I(\omega)$, is the FT of the autocorrelation function. $\Psi(0)$ in the autocorrelation function is the ground state, $V''_g(R)$, vibrational wavefunction $|g,v''_g\rangle$ transferred vertically onto the excited state potential, $V'_e(R)$.

Is there a way to monitor $\langle \Psi(t) | \Psi(0) \rangle$ directly in the time domain? Many suggested schemes.

We need tools to examine various excitation/detection experimental schemes.

Excitation at t = 0, $\mathbf{E}(0)$ Evolution, $\mathbf{U}(t,0) = e^{-i\mathbf{H}t/\hbar}$ Detection, \mathbf{D}

 $\boldsymbol{\rho}(t) = \mathbf{U}(t,0)\mathbf{E}(0)\boldsymbol{\rho}(0)\mathbf{E}^{\dagger}(0)\mathbf{U}^{\dagger}(t,0)$

Observation: Trace (**D** ρ (*t*))

Consider the simplest 3 level system first

Short excitation pulse

$$\Psi(t) = \beta |0\rangle e^{-iE_0 t/\hbar} + \alpha_1 |1\rangle e^{-iE_1 t/\hbar} + \alpha_2 |2\rangle e^{-iE_2 t/\hbar}$$

both eigenstates $|1\rangle$ and $|2\rangle$ are bright

$$\beta = [1 - |\alpha_1|^2 + |\alpha_2|^2]^{1/2}$$

 $\alpha_i = c_i \mu_{i0}$ c_i describes the intensity, spectral distribution, phase, and duration of the excitation pulse.

 μ_{i0} is the electric dipole transition moment

$$\mathbf{\rho}(t) = |\Psi\rangle\langle\Psi| = \begin{pmatrix} |\beta|^2 & \beta\alpha_1^* e^{-i\omega_{01}t} & \beta\alpha_2^* e^{-i\omega_{02}t} \\ \beta^*\alpha_1 e^{+i\omega_{01}t} & |\alpha_1|^2 & \alpha_2^*\alpha_1 e^{-i\omega_{12}t} \\ \beta^*\alpha_2 e^{+i\omega_{02}t} & \alpha_2\alpha_1^* e^{+i\omega_{12}t} & |\alpha_2|^2 \end{pmatrix}$$

This $\mathbf{\rho}(t)$ is obtained by two transformations of $\rho(0)$

 $\boldsymbol{\rho}(t) = \mathbf{U}(t,0)\mathbf{E}(0)\boldsymbol{\rho}(0)\mathbf{E}^{\dagger}(0)\mathbf{U}^{\dagger}(t,0)$

 $\mathbf{E}(0)$ is the excitation matrix, operating at t = 0, on $\mathbf{\rho}(0)$.

$$\mathbf{E}(0) = \begin{pmatrix} \beta & \alpha_1^* & \alpha_2^* \\ \alpha_1 & 0 & 0 \\ \alpha_2 & 0 & 0 \end{pmatrix}$$

$$\begin{split} \mathbf{E}(0)\mathbf{\rho}(0)\mathbf{E}^{\dagger}(0) &= \begin{pmatrix} \beta & \alpha_{1}^{*} & \alpha_{2}^{*} \\ \alpha_{1} & 0 & 0 \\ \alpha_{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \beta^{*} & \alpha_{1}^{*} & \alpha_{2}^{*} \\ \alpha_{1} & 0 & 0 \\ \alpha_{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} \beta^{*} & \alpha_{1}^{*} & \alpha_{2}^{*} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ &= \begin{pmatrix} |\beta|^{2} & \beta\alpha_{1}^{*} & \beta\alpha_{2}^{*} \\ \alpha_{1}\beta^{*} & |\alpha_{1}|^{2} & \alpha_{1}\alpha_{2}^{*} \\ \alpha_{2}\beta^{*} & \alpha_{2}\alpha_{1}^{*} & |\alpha_{2}|^{2} \end{pmatrix} \end{split}$$

U(t,0) is the time evolution matrix. If $\rho(0)$ is expressed in the eigen-basis

$$\mathbf{U}(t,0) = e^{-i\mathbf{H}t/\hbar} = \begin{pmatrix} e^{-i\mathbf{E}_0 t/\hbar} & 0 & 0\\ 0 & e^{-i\mathbf{E}_1 t/\hbar} & 0\\ 0 & 0 & e^{-i\mathbf{E}_2 t/\hbar} \end{pmatrix}$$
$$\mathbf{\rho}(t) = \mathbf{U}(t,0)\mathbf{E}(0)\mathbf{\rho}(0)\mathbf{E}^{\dagger}(0)\mathbf{U}^{\dagger}(t,0) = \begin{pmatrix} |\beta|^2 & \beta\alpha_1^* e^{-i\omega_{01}t} & \beta\alpha_2^* e^{-i\omega_{02}t}\\ \beta^*\alpha_1 e^{+i\omega_{01}t} & |\alpha_1|^2 & \alpha_2^*\alpha_1 e^{-i\omega_{12}t}\\ \beta^*\alpha_2 e^{+i\omega_{02}t} & \alpha_2\alpha_1^* e^{+i\omega_{12}t} & |\alpha_2|^2 \end{pmatrix}$$

as required from $|\Psi(t)\rangle\langle\Psi(t)|$

If the bright state is not an eigenstate, it is often convenient to set up $\rho(0)$, $\mathbf{E}(0)$, and \mathbf{H} in the zero-order basis set. Then find the transformation that diagonalizes \mathbf{H} and apply it to $\rho_{(0)}^{(0)}$.

$$\mathbf{T}^{\dagger}\mathbf{H}\mathbf{T} = \begin{pmatrix} E_0 & 0 & 0\\ 0 & E_1 & 0\\ 0 & 0 & E_2 \end{pmatrix}$$
$$\mathbf{T}^{\dagger}\mathbf{\rho}_{(0)}^{(0)}\mathbf{T} = \mathbf{\rho}(0)$$

Now, we have a choice of several detection schemes.

Detection could involve:

- (i) modification of a beam of probe radiation;
- (ii) detection of emitted radiation through a filter or monochromator.

Let us consider the latter possibility.

Now there are several more possibilities:

- (a) the detector is blind to radiation at ω_{10} (and ω_{12});
- (b) the detector is sensitive to radiation at both ω_{10} and ω_{20} (but not ω_{12}), and both ω_{10} and ω_{20} radiation are detected with the same phase;
- (c) same as (b) but ω_{10} is detected with phase opposite that at ω_{20} .

This could be based on a polarization trick. The 1 \leftarrow 0 transition is $\Delta M = 0$ (*z*-polarized) and 2 \leftarrow 0 is $\Delta M = \pm 1$ (*x* or *y*-polarized). Detection with polarizer at $+\pi/4$ and $-\pi/4$ would correspond to cases (b) and (c).

Detection: $I(t) = Trace (\mathbf{D} \mathbf{\rho}(t))$

For detection of radiation in transition back to $|0\rangle$

$$\mathbf{D} = \sum_{i,j} |i\rangle \mu_{i0} \mu_{0j} \langle j |$$

Trace $(\mathbf{D}\boldsymbol{\rho}(t)) = D_{22}\rho_{22} + D_{11}\rho_{11} + D_{12}\rho_{21} + D_{21}\rho_{12}$

(a) If we set $\mu_{10} = 0$, $\mu_{20} \neq 0$ (blind to ω_{10})

$$I(t) = D_{22}\rho_{22} = |\mu_{20}|^2 |\alpha_2|^2$$

If we set $\mu_{20} = 0$, $\mu_{10} \neq 0$ (blind to ω_{20})

$$I(t) = |\mu_{10}|^2 |\alpha_1|^2$$

(b) If we set $\mu_{10} = \mu_{20} = \mu$, $\alpha_1 = \alpha_2 = \alpha$

$$I(t) = |\mu_{20}|^2 |\alpha_2|^2 + |\mu_{10}|^2 |\alpha_1|^2 + \mu_{10} \mu_{02} \alpha_1^* \alpha_2 e^{i\omega_{12}t} + \mu_{20} \mu_{01} \alpha_1 \alpha_2^* e^{-i\omega_{12}t}$$

= $2|\mu|^2 |\alpha|^2 + 2|\mu|^2 |\alpha|^2 \cos \omega_{12}t$
= $2|\mu|^2 |\alpha|^2 [1 + \cos \omega_{12}t]$ "phased up" at $t = 0$
Quantum Beats. 100% amplitude, modulation.

(c) if we set $\mu_{10} = -\mu_{20} = \mu$, $\alpha_1 = \alpha_2 = \alpha$

 $I(t) = 2|\mu|^2 |\alpha|^2 [1-\cos \omega_{12}t]$ "phased out" at t = 0

If, instead of both eigenstates being bright, we excite a system with one bright state and one dark state, at t = 0 we form $\Psi(0) = \psi_{\text{bright}} = \cos \theta \psi_1 + \sin \theta \psi_2$ eigenstates

Then **E** and **D** could be expressed in terms of bright states rather than eigenstates. In that case, α_1 and α_2 include $\cos \theta$ and $\sin \theta$ factors, and the phase of the Quantum Beats could depend on θ through α_1 , α_2 .

5.74 RWF Lecture #7

Zewail experiment

 μ_{00} and $\mu_{11} \neq 0$ in zero-order basis $\mu_{10} = \mu_{01} = 0$ in zero-order basis

because of $H_{e1e0} \neq 0$, both e+ and e- are bright from both g0 and g1.

But e1 is bright from g1 and dark wrt g0 e0 is bright from g0 and dark wrt g1

as a result, detecting at $\omega_{e+,g1}$ is phased up at t = 0 but at $\omega_{e+,g0}$ is phased out at t = 0. Vice versa for $\omega_{e-,g1}$ and $\omega_{e-,g0}$.

Figure removed due to copyright reasons.

We can use this **p**, **E**, **U**, **D** formalism to describe much more complicated experiments.

- * Another sudden perturbation between t = 0 and time of detection.
- * Detection could be using a beam of coherent radiation. Then one would integrate over *t*. Off resonance? Spectrally not a simple δ -function.
- * Include elements of **D** that correspond to detection via $|\varepsilon_{\text{molecule}}(t) + \varepsilon_{\text{local oscillator}}(t)|^2$ cross term.

USUS UN UNUSUS UNUSUS