Normal \leftrightarrow Local Modes:
 6-Parameter Models

Reading: \quad Chapter 9.4.12.5, The Spectra and Dynamics of Diatomic Molecules, H. Lefebvre-Brion and R. Field, $2^{\text {nd }}$ Ed., Academic Press, 2004.

Last time:
$\omega_{1}, \tau, \omega_{2}$ (measure populations) experiment
$(a b c d) \stackrel{\omega_{2}}{\longleftarrow}(A B) \stackrel{\omega_{1}}{\longleftarrow} g$
two polyads.
populations in (1234) depend on τ.
could use $f_{k}=\frac{\bar{E}_{\text {res }, k}}{\bar{E}_{\text {res }}}$ to devise optimal plucks for more complex situations
(choice of plucks and probes)

* multiple resonances
* more than 2 levels in polyad

Overtone Spectroscopy
nRH single resonance
$\mathrm{nRH}+1 \mathrm{RH}$ double resonance
dynamics in frequency domain

Today:
Classical Mechanics: 21:1 coupled local harmonic oscillators
QM: Morse oscillator
2 Anharmonically Coupled Local Morse Oscillators
$\mathbf{H}_{\text {Local }}^{\text {eff }}$. Antagonism. Local vs. Normal.
Whenever you have two identical subsystems, energy will flow rapidly between them unless
something special makes them dynamically different:

* anharmonicity
* interaction with surroundings
spontaneous symmetry - breaking
Next time: $\quad \mathbf{H}_{\text {Normal }}^{\text {eff }}$.

Two coupled identical harmonic oscillators: Classical Mechanics

$$
\left.\left.\begin{array}{rl}
\mathscr{H} & =\mathscr{T}\left(P_{R}, P_{L}\right)+\mathscr{V}\left(Q_{R}, Q_{L}\right) \quad(\mathrm{R}=\mathrm{Right}, \mathrm{~L}=\text { Left }) \\
\mathscr{T} & =\frac{1}{2}\left(P_{R}, P_{L}\right) \underset{\uparrow}{\mathbf{G}}\binom{P_{R}}{P_{L}} \\
& =\frac{1}{2}\left[G _ { r r } \left(P_{R}^{2}+P_{L}^{\text {geometry }}\right.\right. \text { and masses }
\end{array}\right)+2 G_{r r^{\prime}}^{2} P_{R} P_{L}\right] .
$$

$$
\begin{aligned}
& F_{r r}=k \\
& F_{r r^{\prime}}=k_{R L}
\end{aligned}
$$

$$
G_{r r}=\frac{1}{m_{1}}+\frac{1}{m_{3}}=\frac{1}{m_{2}}+\frac{1}{m_{3}}=\frac{m_{1}+m_{3}}{m_{1} m_{3}}=\frac{1}{\mu}
$$

$$
G_{r r^{\prime}}=\frac{1}{m_{3}} \cos \phi \begin{aligned}
& \text { projection of velocity of (3) for } \\
& (1)-3 \text { stretch onto (3)-(2) } \\
& \text { direction) }
\end{aligned}
$$

kinetic coupling gets small for large m or $\phi=\pi / 2$

Each harmonic oscillator has a natural frequency, ω_{0} :

$$
\omega_{0}=\frac{1}{2 \pi c}\left[F_{r r} G_{r r}\right]^{1 / 2}=\frac{1}{2 \pi c}\left(\frac{k}{\mu}\right)^{1 / 2}
$$

and the coupling is via $1: 1$ kinetic energy and potential energy coupling terms.
Uncouple by going to symmetric and anti-symmetric normal modes.

$$
\begin{array}{ll}
\mathrm{Q}_{\mathrm{s}}=2^{-1 / 2}\left[\mathrm{Q}_{\mathrm{R}}+\mathrm{Q}_{L}\right] & \mathrm{Q}_{\mathrm{a}}=2^{-1 / 2}\left[\mathrm{Q}_{\mathrm{R}}-\mathrm{Q}_{L}\right] \\
\mathrm{P}_{\mathrm{s}}=2^{-1 / 2}\left[\mathrm{P}_{\mathrm{R}}+\mathrm{P}_{L}\right] & \mathrm{P}_{\mathrm{a}}=2^{-1 / 2}\left[\mathrm{P}_{\mathrm{R}}-\mathrm{P}_{L}\right]
\end{array}
$$

plug this into \mathscr{H} and do the algebra

$$
\begin{aligned}
\mathscr{H}= & {\left[\frac{1}{2}\left(\frac{1}{\mu}+G_{r r^{\prime}}\right) P_{s}^{2}+\frac{1}{2}\left(k+k_{R L}\right) Q_{s}^{2}\right] } \\
& +\left[\frac{1}{2}\left(\frac{1}{\mu}-G_{r r^{\prime}}\right) P_{a}^{2}+\frac{1}{2}\left(k-k_{R L}\right) Q_{a}^{2}\right] \\
& \text { no coupling term! }
\end{aligned}
$$

$\omega_{s}=\frac{1}{2 \pi c}\left[\left(\frac{1}{\mu}+G_{r r^{\prime}}\right)\left(k+k_{R L}\right)\right]^{1 / 2}$

$$
\omega_{a}=\frac{1}{2 \pi c}\left[\left(\frac{1}{\mu}-G_{r r^{\prime}}\right)\left(k-k_{R L}\right)\right]^{1 / 2}
$$

$$
\begin{array}{ll}
\text { simplify to } & \omega_{\mathrm{s}}=\omega_{0}+\beta+\lambda \quad \text { (algebra, not power series) } \\
& \omega_{\mathrm{a}}=\omega_{0}+\beta-\lambda
\end{array}
$$

sign of λ determined by whether potential or kinetic coupling is larger (or by the signs of k_{RL} and $\mathrm{G}_{\mathrm{rr}^{\prime}}$).

Morse Oscillator

The Morse oscillator has a physically appropriate and mathematically convenient form. It turns out to give a vastly more convenient representation of an anharmonic vibration than

$$
V(r)=\frac{1}{2} f_{r r} x^{2}+\frac{1}{6} f_{r r r} x^{3}+\frac{1}{24} f_{r r r r} x^{4}
$$

treated by perturbation theory.

$$
\begin{aligned}
V_{\text {Morse }}(r) & =D_{e}\left[1-e^{-a r}\right]^{2} \quad\left(V(0)=0, V(\infty)=D_{e}\right) \\
r & =R-R_{e}
\end{aligned}
$$

Power series expansion of $V_{\text {Morse }}(r)=\frac{1}{2}\left(2 a^{2} D_{e}\right) r^{2}-\frac{1}{6}\left(6 a^{3} D_{e}\right) r^{3}+\frac{1}{24}\left(14 a^{4} D_{e}\right) r^{4}$.
If we use $\quad f_{r r}=2 a^{2} D_{e}$

$$
\begin{aligned}
& f_{\text {rri }}=-6 a^{3} D_{e} \\
& f_{\text {rrrr }}=14 a^{4} D_{e}
\end{aligned}
$$

in the framework of nondengenerate perturbation theory, we get much better results than we expect or deserve.

Why? Because the energy levels of a Morse oscillator have a very simple form:

$$
E_{\text {Morse }}(v) / h c=E_{0}^{\mathrm{Morse}} / h c+\omega_{m}(v+1 / 2)+x_{m}(v+1 / 2)^{2}
$$

and an exact solution for the energy levels gives

$$
\begin{aligned}
& E_{0}^{\text {Morse }}=0 \\
& \omega_{m}=\frac{1}{2 \pi c}\left(\frac{2 a^{2} D_{e}}{\mu}\right)^{1 / 2} \quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \\
& x_{m}=-\frac{a^{2} \hbar}{4 \pi c \mu}
\end{aligned}
$$

we get the exact same relationship between $\left(\mathrm{D}_{e}\right.$, a) and $\left(E_{0}^{\text {Morse }}, \omega_{m}, x_{m}\right)$ by perturbation theory (with a twist)

$$
\begin{aligned}
& \mathbf{H}^{(0)}=\frac{1}{2} f_{r r} \mathbf{r}^{2}+\frac{1}{2 \mu} \mathbf{P}^{2} \\
& E_{v}^{(1)}=\frac{1}{24} f_{r r r r}\langle v| \mathbf{r}^{4}|v\rangle \quad\left(\begin{array}{c}
\text { quartic term treated } \\
\text { to 1st order only! }
\end{array}\right] \\
& E_{v}^{(2)}=\left(\frac{f_{r r r}}{6}\right)^{2} \frac{1}{\omega_{m}}\left[\frac{\langle v-1| \mathbf{r}^{3}|v\rangle-\langle v+1| \mathbf{r}^{3}|v\rangle}{1}+\frac{\langle v-3| \mathbf{r}^{3}|v\rangle-\langle v+3| \mathbf{r}^{3}|v\rangle}{3}\right]
\end{aligned}
$$

This works better than we could ever have hoped, and therefore we should never look a gift horse in the mouth. We always use Morse rather than an arbitrary power series representation of V(r). Sometimes we even use a power series $\sum_{n} a_{n}[1-\exp (-a r)]^{n}$.

Armed with this simplification, consider two anharmonically coupled local stretch oscillators. WHY? What promotes or inhibits energy flow between two identical subsystems?

* ubiquitous
* Local and Normal Mode Pictures are opposite limiting cases
* $\mathbf{H}^{\text {eff }}$ contains antagonistic terms that preserve and destroy limiting behavior
* the roles are reversed for $\mathbf{H}_{\text {Local }}^{\text {eff }}$ and $\mathbf{H}_{\text {Normal }}^{\text {eff }}$

See Section 9.4.12.3 of HLB-RWF
Extremely complicated algebra

1. $\mathbf{H}^{\text {Local }}$ defined identically to $\mathscr{H}^{\text {Local }}$, but with diagonal anharmonicity.
2. Convert to dimensionless $\mathbf{P}, \mathbf{Q}, \mathbf{H}$ and then to $\mathbf{a}, \mathbf{a}^{\dagger}$.
3. exploit the convenient $V(\mathbf{Q}) \leftrightarrow E(v)$ properties of $\mathrm{V}^{\text {Morse }}$.
4. van Vleck transformation to account for the effect of out of polyad coupling terms from $\left[G_{r r} \mathbf{P}_{\mathrm{R}} \mathbf{P}_{\mathrm{L}}+k_{\mathrm{RL}} \mathbf{Q}_{\mathrm{R}} \mathbf{Q}_{\mathrm{L}}\right]$ BUT NOT from $\mathrm{V}^{\text {Morse }}$.
5. Simplest possible fit model - relationships (constraints) between fit parameters imposed by the identical Morse oscillator model.
6. Next time - transformation from $\mathbf{H}^{\text {Local }}$ to $\mathbf{H}^{\text {Normal }}$.
7.

$$
\begin{aligned}
\mathbf{H}^{\text {Local }}= & {[\frac{\pi}{2 \mu} \mathbf{P}_{R}^{2}+\frac{1}{2 \mu} \mathbf{Q}_{R}^{2}+\overbrace{V^{a n h}}^{\mathrm{h}^{(0)}}\left(\mathbf{Q}_{R}\right)] } \\
& +\left[\frac{1}{2 \mu} \mathbf{P}_{L}^{2}+\frac{1}{2 \mu} \mathbf{Q}_{L}^{2}+V^{a n h}\left(\mathbf{Q}_{L}\right)\right] \\
& +\underbrace{G_{r r} \mathbf{P}_{R} \mathbf{P}_{L}+k_{R L} \mathbf{Q}_{R} \mathbf{Q}_{L}}_{\mathbf{H}_{R r}^{(1)}} \\
& V^{a n h}(\mathbf{Q})=V_{\text {Morse }}(\mathbf{Q})-\frac{1}{2} k \mathbf{Q}^{2}
\end{aligned}
$$

This enables us to use Harmonic-Oscillators for basis set but Morse simplification for the separate local oscillators.

We are going to expand $V^{\text {anh }}(\mathbf{Q})$ and keep only the \mathbf{Q}^{3} and \mathbf{Q}^{4} terms and treat them, respectively, by secondorder and first-order perturbation theory, as we did for the simple Morse oscillator.
$\mathbf{H}^{\text {Local }}=\underbrace{\mathbf{h}_{R}^{(0)}+\mathbf{h}_{L}^{(0)}}_{\mathbf{H}^{(0)}}+\mathbf{h}_{R}^{(1)}+\mathbf{h}_{L}^{(1)}+\mathbf{H}_{R L}^{(1)}$

2,3. $\quad \mathbf{Q}, \mathbf{P}, \mathbf{H} \rightarrow \hat{\mathbf{Q}}, \hat{\mathbf{P}}, \hat{\mathbf{H}} \rightarrow \mathbf{a}_{R}, \mathbf{a}_{R}^{\dagger}, \mathbf{a}_{L}, \mathbf{a}_{L}^{\dagger}$

$$
\begin{aligned}
& \mathbf{Q}_{i}=\alpha_{i}^{-1 / 2} \hat{\mathbf{Q}}_{i} \\
& \mathbf{P}_{i}=\hbar \alpha_{i}^{1 / 2} \hat{\mathbf{P}}_{i} \\
& \mathbf{H}^{\text {Local }}=\hbar\left(2 \pi c \omega_{M}\right) \hat{\mathbf{H}}^{\text {Local }}
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{i}=\frac{1}{2 \pi c}\left[k_{i} / \mu_{i}\right]^{1 / 2} \\
& \hat{\mathbf{Q}}_{R}=2^{-1 / 2}\left(\mathbf{a}_{R}+\mathbf{a}_{R}^{\dagger}\right) \text { etc. } \\
& \hat{\mathbf{P}}_{R}=2^{-1 / 2} i\left(\mathbf{a}_{R}^{\dagger}-\mathbf{a}_{R}\right) \text { etc. } \\
& \mathbf{H}^{\text {Local }}=\hbar\left(2 \pi c \omega_{M}\right)\left[\left|v_{R} v_{L}\right\rangle\left\langle v_{R} v_{L}\right|\right]\left\{\left(v_{R}+1 / 2\right)+\left(v_{L}+1 / 2\right)+F\left[\left(v_{R}+1 / 2\right)^{2}+\left(v_{L}+1 / 2\right)^{2}\right]\right\} \\
& +\left|v_{R} \pm 1, v_{L} \mp 1\right\rangle\left\langle v_{R} v_{L}\left\{\frac{D+C}{2}\left[\left(v_{R}+1 / 2 \pm 1 / 2\right)\left(v_{L}+1 / 2 \mp 1 / 2\right)\right]^{2}\right\}\right. \\
& +\left|v_{R} \pm 1, v_{L} \pm 1\right\rangle\left\langle v_{R} v_{L}\left\{\frac{D-C}{2}\left[\left(v_{R}+1 / 2 \pm 1 / 2\right)\left(v_{L}+1 / 2 \pm 1 / 2\right)\right]^{1 / 2}\right\}\right. \\
& F=-\frac{2^{-1 / 2}(\hbar a)}{4 \pi\left(\mu D_{e}\right)^{1 / 2}} \text { dimensionless (} a, D_{e} \text { from Morse) } \\
& \left.\begin{array}{l}
C=G_{r r^{\prime}} \mu \\
D=\frac{k_{R L}}{k_{M}}=\frac{k_{R L}}{2 D_{e} a^{2}}
\end{array}\right\} \text { dimensionless }
\end{aligned}
$$

First 2 lines of $\mathbf{H}^{\text {Local }}$ are polyad, third line is out of polyad.
4.

$$
\begin{aligned}
\hat{\mathbf{H}}_{\mathrm{Local}}^{\mathrm{eff}}= & \left|v_{R} v_{L}\right\rangle\left\langle v_{R} v_{L}\right|\left\{\left(v_{R}+v_{L}+1\right)\left[1-\frac{(D-C)^{2}}{8}\right]+\frac{F}{2}\left[\left(v_{R}+v_{L}+1\right)^{2}+\left(v_{R}-v_{L}\right)^{2}\right]\right\} \\
& +\left|v_{R} \pm 1, v_{L} \mp 1\right\rangle\left\langle v_{R} v_{L}\right|\left\{\frac{D+C}{2}\left[\left(v_{r}+1 / 2 \pm 1 / 2\right)\left(v_{L}+1 / 2 \mp 1 / 2\right)\right]^{1 / 2}\right\} \\
& \text { \&upling within poss }
\end{aligned}
$$

$\frac{F}{2}\left(v_{R}-v_{L}\right)^{2}$ tries to preserve local mode limit. The $\frac{\mathrm{D}+\mathrm{C}}{2}$ coupling term tries to destroy the local mode limit.
Polyad $\quad P=v_{R}+v_{L}$
Overall width of polyad: $E_{(P / 2, P / 2)}^{(0)}-E_{(O, P)}^{(0)}=-\frac{F}{2} P^{2} \quad(F<0)$
$(0, \mathrm{P})$ and $(\mathrm{P}, 0)$ are at low energy extreme because of anharmonicity: $\omega(v+1 / 2)-|x|(v+1 / 2)^{2}$.
Off-diagonal matrix elements are smallest between $\quad(0, P) \sim(1, P-1)$
and $(P, 0) \sim(P-1,1)$

$$
\mathbf{H}_{(0, P)(1, P-1)}^{(1)}=\left(\frac{D+C}{2}\right) P^{1 / 2}
$$

Off diagonal matrix elements are largest between $(P / 2, P / 2) \sim(P / 2-1, P / 2+1)$

$$
\mathbf{H}_{(P / 2, P / 2)(P / 2-1, P / 2+1)}^{(1)}=\left(\frac{D+C}{2}\right)[(P / 2)(P / 2+1)]^{1 / 2}
$$

larger by a factor of $[(P / 4)+1 / 2]^{1 / 2}$.
5. General (minimal fit model)

$$
\begin{aligned}
\mathbf{H}_{\text {Local }}^{\mathrm{eff}} / h c & =\left|v_{R} v_{L}\right\rangle\left\langle v_{R} v_{L}\right|\left\{\omega_{R}\left(v_{R}+1 / 2\right)+\omega_{L}\left(v_{L}+1 / 2\right)\right. \\
& \left.+x_{R}\left(v_{R}+1 / 2\right)^{2}+x_{L}\left(v_{L}+1 / 2\right)^{2}+x_{R L}\left(v_{R}+1 / 2\right)\left(v_{L}+1 / 2\right)\right\} \\
& +\left|v_{R} \pm 1, v_{L} \mp 1\right\rangle\left\langle v_{R} v_{L}\left\{\left(H_{R L} / h c\right)\left[\left(v_{R}+1 / 2 \pm 1 / 2\right)\left(v_{L}+1 / 2 \mp 1 / 2\right)\right]^{1 / 2}\right\}\right.
\end{aligned}
$$

But, in the two identical 1:1 coupled Morse local oscillator picture

$$
\begin{aligned}
\omega_{R} & =\omega_{L}=\omega_{M}\left[1-\frac{(D-C)^{2}}{8}\right]=\omega^{\prime} \\
x_{R} & =x_{L}=x_{M}=-\frac{a^{2} \hbar}{4 \pi c \mu} \\
x_{R L} & =0 \\
H_{R L} / h c & =\omega_{M}\left[\frac{D+C}{2}\right]
\end{aligned}
$$

