Diagrammatic Perturbation Theory

A simplified way of keeping track of the correlation functions that contribute to the nonlinear response (for third order nonlinear spectroscopy, this can get complicated).

- For a multistate system, there can be many possible interaction processes.
- Not all correlation functions in the response function contribute to a particular signal $\left(\bar{k}_{\text {sig }}\right)$.

Feynman diagrams and Ladder diagrams* keep track of propagation of ρ. These show repeated interaction with field followed by evolution under H_{0}. Interactions are shown by arrows, which propagate the density matrix from one element to another.

- Allows you to keep track of signal frequency and wavevector.
- You can write down a correlation function directly from diagram by assigning a factor for each interaction, a factor for each time evolution, and the final trace.

Feynman Diagrams

1. Double line represents ket and bra side of ρ
2. Time propagation upward
3. Lines intersecting diagram represent field interactionbetween interactions the system evolves freely under $H_{0},(G)$.

Ladder Diagrams

1. Multiple states arranged vertically by energy
2. Time propagates to right
3. Lines between levels indicate interaction followed by free propagation under $H_{0},(G)$.

[^0]
TERMS FOR FIELD-MATTER INTERACTION

- Each interaction propagates one side of ρ.
- Each interaction adds a dipole matrix element $\mu_{i j}$ to the material nonlinear response function,
- Each interaction adds input electric field factors to the polarization, which describes the frequency and wavevector of the radiated signal.

	$\frac{\text { Contribution }}{\text { KET SIDE }}$	Contribution to material
$\underline{\text { response }}$ to signal	$\underline{\text { field }}$	

$\mu_{b a} E_{n} \exp \left[i \mathbf{k}_{\mathbf{n}} \mathbf{r}-i \omega_{n} t\right]$

$|b\rangle=$
$|a\rangle$

Stimulated Emission
$\mu_{b a} E_{n}^{*} \exp \left[-i \mathbf{k}_{\mathbf{n}} \mathbf{r}+i \omega_{n} t\right]$

$|a\rangle \square$
$|b\rangle$
$\mu_{b a}$
$-\mathbf{k}_{\mathrm{n}} \quad-\omega_{n}$

BRA SIDE
Absorption
$\mu_{b a}^{*} E_{n}^{*} \exp \left[-i \mathbf{k}_{\mathbf{n}} \mathbf{r}+i \omega_{n} t\right]$

$|b\rangle \square$
$|a\rangle$
\square $\mu_{b a}^{*} \quad-\mathbf{k}_{\mathbf{n}} \quad-\omega_{n}$
$\begin{array}{cc}\text { Stimulated Emission } & \langle b| \\ \mu_{b a}^{*} E_{n} \exp \left[i \mathbf{k}_{\mathbf{n}} \mathbf{r}-i \omega_{n} t\right] \quad \mid\langle a|\end{array}$

$\mu_{b a}^{*} \quad+\mathbf{k}_{\mathbf{n}}+\omega_{n}$

FINAL TRACE: (convention: ket side)

$|a\rangle$
$|b\rangle$
$\quad \mu_{b a}$

- Bra is complex conjugate of Ket; Absorption is complex conjugate of S.E.
- Feynman: absorption: inward; emission: outward; bra: right; ket: left.
- Ladder: absorption: up; emission: down; bra: dotted; ket: solid.

The diagram can now be used to write down correlation functions that contribute to response function:

1) Read off field factors and add propagation under H_{0} between interactions (phenomenological: $G_{i j}(t)=\exp \left[-i \omega_{i j} t-\Gamma_{i j} t\right]$).
2) Add factor of (-1) for each bra side interaction (from commutators).
3) The radiated signal will have frequency $\sum_{i} \omega_{i}=\omega_{s i g}$ and wave vector $\sum_{i} \bar{k}_{i}=\bar{k}_{s i g}$

EXAMPLE: Linear Response for Two-level System

...starting with population in a
$|b\rangle$
$|a\rangle$ \qquad
ket side

$$
C(t)=\operatorname{Tr}\left[\mu(t) \mu(0) \rho_{e q}\right]
$$

(4) Act on ket with μ and take trace.
(3) Propagate under $\mathrm{H}_{0} ; G_{a b}=e^{-i \omega_{b a} t-\Gamma_{b a} t}$.
(2) Act on ket with $\mu(0)$ to create $\rho_{\text {ba }}$.
(1) Start in $\rho_{\text {aa }}$ (add factor of p_{a}).

Working from bottom up

$$
\begin{aligned}
C(t) & =p_{a}\left[\mu_{b a}\right]\left[e^{-i \omega_{b a} t-\Gamma_{b a} t}\right]\left[\mu_{a b}\right] \\
& =p_{a}\left|\mu_{b a}\right|^{2} e^{-i \omega_{b a} t-\Gamma_{b a} t}
\end{aligned}
$$

The product of incident fields (response/polarization):

$$
\begin{aligned}
& E_{1} e^{-i \omega_{t} t+i \bar{k}_{1} \cdot \bar{r}} \Rightarrow P(t) e^{-i \omega_{s g_{g} t} t i \bar{k}_{s i g} \cdot \bar{r}} \\
& \omega_{s i g}=\omega_{1} \quad \bar{k}_{s i g}=\bar{k}
\end{aligned}
$$

Starting in b gives same result.

Third-Order Nonlinear Spectroscopy

Third-order nonlinearities describe most of the coherent nonlinear experiments that are used: pump-probe, transient grating, photon echoes, CARS (coherent anti-stokes Raman spec.), degenerate four wave mixing (4WM) . . .

These experiments are described by some or all of the eight correlation functions that contribute to $R^{(3)}$:

$$
R^{(3)}=\left(\frac{i}{\hbar}\right)^{3} \sum_{\alpha=1}^{4}\left[R_{\alpha}-R_{\alpha}^{*}\right]
$$

Let's write out the diagrams/correlation functions for a two-level system starting in $\rho_{a a}$, where the dipole operator couples $|b\rangle$ and $|a\rangle$.

Now let's write out the correlation function, R_{2} (photon echoes, pump-probes, DFWM):

$$
\begin{aligned}
R_{2} & =\mu_{a b} G_{b a}\left(\tau_{3}\right) \mu_{b a} G_{b b}\left(\tau_{2}\right) \mu_{b a} G_{a b}\left(\tau_{1}\right) \mu_{a b} \rho_{a a} \quad \text { set } \rho_{e q} \Rightarrow \rho_{a a} \\
R_{2} & =(-1)^{2} p_{a}\left(\mu_{a b}\right)\left[e^{-i \omega_{b a} \tau_{3}-\Gamma_{b a} \tau_{3}}\right]\left(\mu_{b a}\right)\left(e^{-i \omega_{b b} \tau_{2}-\Gamma_{b b} \tau_{2}}\right)\left(\mu_{b a}\right)\left[e^{-i \omega_{b a} \tau_{1}-\Gamma_{a b} \tau_{1}}\right]\left(\mu_{b a}\right) \\
& =p_{a}\left|\mu_{a b}\right|^{4}\left[e^{-i \omega_{a b}\left(\tau_{1}-\tau_{3}\right)-\Gamma_{b a}\left(\tau_{1}+\tau_{3}\right)-\Gamma_{b b}\left(\tau_{2}\right)}\right]
\end{aligned}
$$

The diagrams also give the input field contributions as

$$
\begin{aligned}
\bar{E}_{1} \bar{E}_{2} \bar{E}_{3} & =\left(E_{1}^{*} e^{+i \omega_{1} t-i \bar{k}_{1} \cdot \bar{r}}\right)\left(E_{2} e^{-i \omega_{2} t+i \bar{k}_{2} \cdot r}\right)\left(E_{3} e^{+i \omega_{3} t-i \bar{k}_{3} \cdot \bar{v}_{3}}\right) \\
& =E_{1}^{*} E_{2} E_{3} e^{-\omega_{s i g} t+i \overline{k s i s i g}^{s} \cdot \bar{r}} \\
\omega_{s i g} & =-\omega_{1}+\omega_{2}+\omega_{3} \quad k_{s i g}=-\bar{k}_{1}+\bar{k}_{2}+\bar{k}_{3}
\end{aligned}
$$

This dictates the direction that the field radiates.
For $R_{2}: \quad P^{(3)} \sim R_{2}\left(E_{1} E_{2} E_{3}\right) \Rightarrow E_{\text {sig }}$
In the delta-function pulse limit, this response function with the field factors equals the polarization.

Frequency Domain Representaion

A Fourier transform of $P^{(3)}(t)$ with respect to the time time intervals allows us to obtain an expression for $\chi^{(3)}\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$:

$$
P^{(3)}(\omega)=\chi^{(3)}\left(\omega ; \omega_{1}, \omega_{2}, \omega_{3}\right) \bar{E}_{1} \bar{E}_{2} \bar{E}_{3}
$$

where $\chi^{(n)}(t)=\int_{0}^{\infty} d \tau_{n} e^{i \Omega_{n} \tau_{n}} \ldots \int_{0}^{\infty} d \tau_{1} e^{i \Omega_{1} \tau_{1}} R^{(n)}\left(\tau_{1}, \tau_{2}, \ldots \tau_{n}\right)$ and $\Omega_{n}=\sum_{i=1}^{n} \omega_{i}$.

In general, $\mathrm{R}^{(3)}$ is a sum over many correlation function and includes a sum over states. Also, to describe frequency domain experiments, we have to permute over all time orderings. Most general: the eight terms in $R^{(3)}$ lead to 48 terms for $\chi^{(3)}$.

An example of one term for the R_{2} example we just did $\left(\omega_{\text {sig }}=-\omega_{1}+\omega_{2}+\omega_{3}\right)$, in which the damping is treated phenomenologically:

$$
\begin{gathered}
\chi^{(3)}\left(\omega_{1}, \omega_{2}, \omega_{3}\right)=\left|\mu_{b a}\right|^{4} \frac{1}{\omega_{1}-\omega_{b a}-i \Gamma_{b a}} \cdot \frac{1}{-\left(\omega_{2}-\omega_{1}-\omega_{b b}\right)-i \Gamma_{b b}} \cdot \frac{1}{-\left(\omega_{3}+\omega_{2}-\omega_{1}-\omega_{b a}\right)-i \Gamma_{b a}} \\
\text { "-" for ket }
\end{gathered}
$$

The terms are written from a diagram with each interaction and propagation adding a resonant denominator term (here reading left to right). The frequency domain response will look like a sum over terms like these.

Examples of third-order spectroscopies:

Strategy for describing an experiment:

1) Start with the wavevector and frequency of the signal field of interest.
2) (a) Time-domain: Define a time-ordering along the incident wavevectors or
(b) Frequency domain: Define the frequencies along the incident wavevectors
3) Sum up diagrams for correlation functions that will scatter into the wave-vector matched direction, keeping only resonant terms (rotating wave approximation). In frequency: You can use ladder diagrams to determine which correlation functions yield signals that pass through your filter/monochromator.

Consider two degenerate third order experiments $\left(\omega_{1}=\omega_{2}=\omega_{3}=\omega_{\text {sig }}\right)$:

1) Photon Echo (PE) $k_{\text {sig }}=-k_{1}+k_{2}+k_{3} \Rightarrow R_{2}+R_{3}$

Used for relaxation: distinguish broadening mechanisms, study spectral diffusion
2) Transient Grating (TG) $k_{\text {sig }}=+k_{1}-k_{2}+k_{3} \Rightarrow R_{1}+R_{4}$

Population dynamics; wave packets; quantum beats.

These methods are distinguished by being rephasing (PE) or non-rephasing (TG) experiments.
Rephasing (time-reversal) terms R_{1} and R_{4} evolve in conjugate coherences during τ_{1} and τ_{3}.

$$
\begin{array}{ll}
\tau_{1} & \frac{\tau_{3}}{|b\rangle\langle a|} \rightarrow \\
\frac{|b\rangle\langle a|}{} \\
|a\rangle\langle b| \rightarrow & |b\rangle\langle a|
\end{array}
$$

For rephasing: all τ_{1} phases identical at $t=t_{2}-t_{1}$

$$
\tau_{1}=\tau_{3}
$$

[^0]: * D. Lee and A. C. Albrecht, "A unified view of Raman, resonance Raman, and fluorescence spectroscopy (and their analogues in two-photon absorption)." Adv. Infrared and Raman Spectr. 12, 179 (1985).

