SCHRÖDINGER AND HEISENBERG REPRESENTATIONS

The mathematical formulation of the dynamics of a quantum system is not unique. Ultimately we are interested in observables (probability amplitudes)—we can't measure a wavefunction.

An alternative to propagating the wavefunction in time starts by recognizing that a unitary transformation doesn't change an inner product.

$$
\left\langle\varphi_{j} \mid \varphi_{i}\right\rangle=\left\langle\varphi_{j}\right| U^{\dagger} U\left|\varphi_{i}\right\rangle
$$

For an observable:

$$
\left\langle\varphi_{j}\right| A\left|\varphi_{i}\right\rangle=\left(\left\langle\varphi_{j}\right| U^{\dagger}\right) A\left(U\left|\varphi_{i}\right\rangle\right)=\left\langle\varphi_{j}\right| U^{\dagger} A U\left|\varphi_{i}\right\rangle
$$

Two approaches to transformation:

1) Transform the eigenvectors: $\left|\varphi_{i}\right\rangle \rightarrow U\left|\varphi_{i}\right\rangle$. Leave operators unchanged.
2) Transform the operators: $A \rightarrow U^{\dagger} A U \square$ Leave eigenvectors unchanged.
(1) Schrödinger Picture: Everything we have done so far. Operators are stationary. Eigenvectors evolve under $U\left(t, t_{0}\right)$.
(2) Heisenberg Picture: Use unitary property of U to transform operators so they evolve in time. The wavefunction is stationary. This is a physically appealing picture, because particles move - there is a time-dependence to position and momentum.

Schrödinger Picture

We have talked about the time-development of $|\psi\rangle$, which is governed by

$$
\begin{aligned}
& \mathrm{i} \hbar \frac{\partial}{\partial \mathrm{t}}|\psi\rangle=\mathrm{H}|\psi\rangle \quad \text { in differential form, or alternatively } \\
& |\psi(\mathrm{t})\rangle=\mathrm{U}\left(\mathrm{t}, \mathrm{t}_{0}\right)\left|\psi\left(\mathrm{t}_{0}\right)\right\rangle \quad \text { in an integral form. }
\end{aligned}
$$

Typically for operators: $\frac{\partial \mathrm{A}}{\partial \mathrm{t}}=0$

What about observables? Expectation values:

$$
\begin{array}{rlrl}
\langle\mathrm{A}(\mathrm{t})\rangle & =\langle\psi(\mathrm{t})| \mathrm{A}|\psi(\mathrm{t})\rangle & & \begin{array}{l}
\text { or... } \\
\mathrm{i} \hbar \frac{\partial}{\partial \mathrm{t}}\langle\mathrm{~A}\rangle
\end{array} \\
=\mathrm{i} \hbar\left[\langle\psi| \mathrm{A}\left|\frac{\partial \psi}{\partial \mathrm{t}}\right\rangle+\left\langle\frac{\partial \psi}{\partial \mathrm{t}}\right| \mathrm{A}|\psi\rangle+\langle\psi| \frac{\partial \mathrm{A}}{\partial \mathrm{t}}|\psi\rangle\right] \\
& =\langle\psi| \mathrm{AH}|\psi\rangle-\langle\psi| \mathrm{HA}|\psi\rangle & & =\mathrm{i} \hbar \frac{\partial}{\partial \mathrm{t}} \operatorname{Tr}(\mathrm{~A} \rho) \\
& =\langle\psi|[\mathrm{A}, \mathrm{H}]|\psi\rangle & \mathrm{i} \hbar \operatorname{Tr}\left(\mathrm{~A} \frac{\partial}{\partial \mathrm{t}} \rho\right) \\
& =\langle[\mathrm{A}, \mathrm{H}]\rangle & & \operatorname{Tr}(\mathrm{A}[\mathrm{H}, \rho]) \\
& =\operatorname{Tr}([\mathrm{A}, \mathrm{H}] \rho)
\end{array}
$$

If A is independent of time (as it should be in the Schrödinger picture) and commutes with H, it is referred to as a constant of motion.

Heisenberg Picture

Through the expression for the expectation value,

$$
\begin{aligned}
\langle\mathrm{A}\rangle & =\langle\psi(\mathrm{t})| \mathrm{A}|\psi(\mathrm{t})\rangle_{\mathrm{s}}=\left\langle\psi\left(\mathrm{t}_{0}\right)\right| \mathrm{U}^{\dagger} \mathrm{A} \mathrm{U}\left|\psi\left(\mathrm{t}_{0}\right)\right\rangle_{\mathrm{s}} \\
& =\langle\psi| \mathrm{A}(\mathrm{t})|\psi\rangle_{\mathrm{H}}
\end{aligned}
$$

we choose to define the operator in the Heisenberg picture as:

$$
\begin{aligned}
A_{H}(t) & =U^{\dagger}\left(t, t_{0}\right) A_{S} U\left(t, t_{0}\right) \\
A_{H}\left(t_{0}\right) & =A_{S}
\end{aligned}
$$

Also, since the wavefunction should be time-independent $\frac{\partial}{\partial \mathrm{t}}\left|\psi_{\mathrm{H}}\right\rangle=0$, we can write

$$
\left|\psi_{S}(t)\right\rangle=U\left(t, t_{0}\right)\left|\psi_{H}\right\rangle
$$

So,

$$
\left|\psi_{H}\right\rangle=U^{\dagger}\left(t, t_{0}\right)\left|\psi_{S}(t)\right\rangle=\left|\psi_{S}\left(t_{0}\right)\right\rangle
$$

In either picture the eigenvalues are preserved:

$$
\begin{aligned}
\mathrm{A}\left|\varphi_{\mathrm{i}}\right\rangle_{\mathrm{S}} & =\mathrm{a}_{\mathrm{i}}\left|\varphi_{\mathrm{i}}\right\rangle_{\mathrm{S}} \\
\mathrm{U}^{\dagger} \mathrm{AUU}^{\dagger}\left|\varphi_{\mathrm{i}}\right\rangle_{\mathrm{S}} & =\mathrm{a}_{\mathrm{i}} \mathrm{U}^{\dagger}\left|\varphi_{\mathrm{i}}\right\rangle_{\mathrm{S}} \\
\mathrm{~A}_{\mathrm{H}}\left|\varphi_{\mathrm{i}}\right\rangle_{\mathrm{H}} & =\mathrm{a}_{\mathrm{i}}\left|\varphi_{\mathrm{i}}\right\rangle_{\mathrm{H}}
\end{aligned}
$$

The time-evolution of the operators in the Heisenberg picture is:

$$
\begin{aligned}
\frac{\partial \mathrm{A}_{\mathrm{H}}}{\partial \mathrm{t}} & =\frac{\partial}{\partial \mathrm{t}}\left(\mathrm{U}^{\dagger} \mathrm{A}_{\mathrm{S}} \mathrm{U}\right)=\frac{\partial \mathrm{U}^{\dagger}}{\partial \mathrm{t}} \mathrm{~A}_{\mathrm{S}} \mathrm{U}+\mathrm{U}^{\dagger} \mathrm{A}_{\mathrm{S}} \frac{\partial \mathrm{U}}{\partial \mathrm{t}}+\mathrm{U}^{\dagger} \frac{\partial A_{\mathrm{S}}}{\partial \mathrm{t}} \mathrm{U} \\
& =\frac{i}{\hbar} \mathrm{U}^{\dagger} \mathrm{H} \mathrm{~A}_{\mathrm{S}} \mathrm{U}-\frac{\mathrm{i}}{\hbar} \mathrm{U}^{\dagger} \mathrm{A}_{\mathrm{S}} \mathrm{HU}+\left(\frac{\partial \mathrm{A}}{\partial \mathrm{t}}\right)_{\mathrm{H}} \\
& =\frac{\mathrm{i}}{\hbar} \mathrm{H}_{\mathrm{H}} \mathrm{~A}_{\mathrm{H}}-\frac{\mathrm{i}}{\hbar} \mathrm{~A}_{\mathrm{H}} \mathrm{H}_{\mathrm{H}} \\
& =\frac{-\mathrm{i}}{\hbar}[\mathrm{~A}, \mathrm{H}]_{\mathrm{H}} \\
\mathrm{i} \hbar \frac{\partial}{\partial \mathrm{t}} \mathrm{~A}_{\mathrm{H}} & =[\mathrm{A}, \mathrm{H}]_{\mathrm{H}} \quad \text { Heisenberg Eqn. of Motion }
\end{aligned}
$$

Here $H_{H}=U^{\dagger} H U$. For a time-dependent Hamiltonian, U and H need not commute.
Often we want to describe the equations of motion for particles with an arbitrary potential:

$$
\mathrm{H}=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}}+\mathrm{V}(\mathrm{x})
$$

For which we have

$$
\dot{\mathrm{p}}=-\frac{\partial \mathrm{V}}{\partial \mathrm{x}} \text { and } \dot{\mathrm{x}}=\frac{\mathrm{p}}{\mathrm{~m}} \quad \ldots \text { using }\left[\mathrm{x}^{\mathrm{n}}, \mathrm{p}\right]=\mathrm{i} \hbar \mathrm{nx} \mathrm{x}^{\mathrm{n}-1} ;\left[\mathrm{x}, \mathrm{p}^{\mathrm{n}}\right]=\mathrm{i} \hbar \mathrm{np}^{\mathrm{n}-1}
$$

THE INTERACTION PICTURE

When solving problems with time-dependent Hamiltonians, it is often best to partition the Hamiltonian and treat each part in a different representation. Let's partition

$$
H(t)=H_{0}+V(t)
$$

H_{0} : Treat exactly—can be (but usually isn't) a function of time.
$V(t)$: Expand perturbatively (more complicated).

The time evolution of the exact part of the Hamiltonian is described by

$$
\frac{\partial}{\partial \mathrm{t}} \mathrm{U}_{0}\left(\mathrm{t}, \mathrm{t}_{0}\right)=\frac{-\mathrm{i}}{\hbar} \mathrm{H}_{0}(\mathrm{t}) \mathrm{U}_{0}\left(\mathrm{t}, \mathrm{t}_{0}\right)
$$

where

$$
\mathrm{U}_{0}\left(\mathrm{t}, \mathrm{t}_{0}\right)=\exp _{+}\left[\frac{\mathrm{i}}{\hbar} \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{~d} \tau \mathrm{H}_{0}(\mathrm{t})\right] \Rightarrow \mathrm{e}^{-\mathrm{i} \mathrm{H}_{0}\left(\mathrm{t}-\mathrm{t}_{0}\right) / \hbar} \quad \text { for } \mathrm{H}_{0} \neq \mathrm{f}(\mathrm{t})
$$

We define a wavefunction in the interaction picture $\left|\psi_{I}\right\rangle$ as:

$$
\begin{gathered}
\left|\psi_{\mathrm{S}}(\mathrm{t})\right\rangle \equiv \mathrm{U}_{0}\left(\mathrm{t}, \mathrm{t}_{0}\right)\left|\psi_{\mathrm{I}}(\mathrm{t})\right\rangle \\
\text { or } \quad\left|\psi_{\mathrm{I}}\right\rangle=\mathrm{U}_{0}^{\dagger}\left|\psi_{\mathrm{s}}\right\rangle
\end{gathered}
$$

Substitute into the T.D.S.E.

$$
i \hbar \frac{\partial}{\partial t}\left|\psi_{s}\right\rangle=H\left|\psi_{s}\right\rangle
$$

$$
\begin{aligned}
& \frac{\partial}{\partial \mathrm{t}} \mathrm{U}_{0}\left(\mathrm{t}, \mathrm{t}_{0}\right)\left|\psi_{\mathrm{I}}\right\rangle=\frac{-\mathrm{i}}{\hbar} \mathrm{H}(\mathrm{t}) \mathrm{U}_{0}\left(\mathrm{t}, \mathrm{t}_{0}\right)\left|\psi_{\mathrm{I}}\right\rangle \\
& \frac{\partial \mathrm{U}_{0}}{\partial \mathrm{t}}\left|\psi_{\mathrm{I}}\right\rangle+\mathrm{U}_{0} \frac{\partial\left|\psi_{\mathrm{I}}\right\rangle}{\partial \mathrm{t}}= \frac{-\mathrm{i}}{\hbar}\left(\mathrm{H}_{0}+\mathrm{V}(\mathrm{t})\right) \mathrm{U}_{0}\left(\mathrm{t}, \mathrm{t}_{0^{\prime}}\right)\left|\psi_{\mathrm{I}}\right\rangle \\
& \frac{-\mathrm{i}}{\hbar} \mathrm{H}_{0} U_{0}\left|\psi_{\mathrm{I}}\right\rangle+\mathrm{U}_{0} \frac{\partial\left|\psi_{\mathrm{I}}\right\rangle}{\partial \mathrm{t}}= \frac{-\mathrm{i}}{\hbar}\left(H_{0}+\mathrm{V}(\mathrm{t})\right) \mathrm{U}_{0}\left|\psi_{\mathrm{I}}\right\rangle \\
& \therefore \quad i \hbar \frac{\partial\left|\psi_{\mathrm{I}}\right\rangle}{\partial \mathrm{t}}=\mathrm{V}_{\mathrm{I}}\left|\psi_{\mathrm{I}}\right\rangle
\end{aligned}
$$

$$
\text { where: } V_{I}(t)=U_{0}^{\dagger}\left(t, t_{0}\right) V(t) U_{0}\left(t, t_{0}\right)
$$

$\left|\psi_{I}\right\rangle$ satisfies the Schrödinger equation with a new Hamiltonian: the interaction picture Hamiltonian is the U_{0} unitary transformation of $V(t)$.

Note: Matrix elements in $V_{I}=\langle k| V_{\mathrm{I}}|1\rangle=\mathrm{e}^{-\mathrm{i} \omega_{k} \mathrm{t}} \mathrm{V}_{\mathrm{kl}} \ldots$ where k and 1 are eigenstates of H_{0}.
We can now define a time-evolution operator in the interaction picture:

$$
\left|\psi_{\mathrm{I}}(\mathrm{t})\right\rangle=\mathrm{U}_{\mathrm{I}}\left(\mathrm{t}, \mathrm{t}_{0}\right)\left|\psi_{\mathrm{I}}\left(\mathrm{t}_{0}\right)\right\rangle
$$

$$
\begin{aligned}
& \text { where } \begin{aligned}
\mathrm{U}_{\mathrm{I}}\left(\mathrm{t}, \mathrm{t}_{0}\right) & =\exp _{+}\left[\frac{-\mathrm{i}}{\hbar} \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{~d} \tau \mathrm{~V}_{\mathrm{I}}(\tau)\right] \\
\left|\psi_{\mathrm{S}}(\mathrm{t})\right\rangle & =\mathrm{U}_{0}\left(\mathrm{t}, \mathrm{t}_{0}\right)\left|\psi_{\mathrm{I}}(\mathrm{t})\right\rangle \\
& =\mathrm{U}_{0}\left(\mathrm{t}, \mathrm{t}_{0}\right) \mathrm{U}_{\mathrm{I}}\left(\mathrm{t}, \mathrm{t}_{0}\right)\left|\psi_{\mathrm{I}}\left(\mathrm{t}_{0}\right)\right\rangle \\
& =\mathrm{U}_{0}\left(\mathrm{t}, \mathrm{t}_{0}\right) \mathrm{U}_{\mathrm{I}}\left(\mathrm{t}, \mathrm{t}_{0}\right)\left|\psi_{\mathrm{S}}\left(\mathrm{t}_{0}\right)\right\rangle \\
& \therefore \mathrm{U}\left(\mathrm{t}, \mathrm{t}_{0}\right)=\mathrm{U}_{0}\left(\mathrm{t}, \mathrm{t}_{0}\right) \mathrm{U}_{\mathrm{I}}\left(\mathrm{t}, \mathrm{t}_{0}\right) \quad \text { Order matters! } \\
& U\left(t, t_{0}\right)=U_{0}\left(t, t_{0}\right) \exp _{+}\left[\frac{-i}{\hbar} \int_{t_{0}}^{t} d \tau V_{I}(\tau)\right]
\end{aligned}
\end{aligned}
$$

which is defined as

$$
\begin{aligned}
U\left(t, t_{0}\right)= & U_{0}\left(t, t_{0}\right)+ \\
& \sum_{n=1}^{\infty}\left(\frac{-i}{\hbar}\right)^{n} \int_{t_{0}}^{t} d \tau_{\mathrm{n}} \int_{t_{0}}^{\tau_{\mathrm{n}}} d \tau_{\mathrm{n}-1} \ldots \int_{\mathrm{t}_{0}}^{\tau_{2}} \mathrm{~d} \tau_{1} \mathrm{U}_{0}\left(\mathrm{t}, \tau_{\mathrm{n}}\right) \mathrm{V}\left(\tau_{\mathrm{n}}\right) \mathrm{U}_{0}\left(\tau_{\mathrm{n}}, \tau_{\mathrm{n}-1}\right) \ldots \\
& \mathrm{U}_{0}\left(\tau_{2}, \tau_{1}\right) \mathrm{V}\left(\tau_{1}\right) \mathrm{U}_{0}\left(\tau_{1}, \mathrm{t}_{0}\right)
\end{aligned}
$$

where we have used the composition property of $U\left(t, t_{0}\right)$. The same positive time-ordering applies. Note that the interactions $\mathrm{V}\left(\tau_{\mathrm{i}}\right)$ are not in the interaction representation here. Rather we have expanded

$$
\mathrm{V}_{\mathrm{I}}(\mathrm{t})=\mathrm{U}_{0}^{\dagger}\left(\mathrm{t}, \mathrm{t}_{0}\right) \mathrm{V}(\mathrm{t}) \mathrm{U}_{0}\left(\mathrm{t}, \mathrm{t}_{0}\right)
$$

and collected terms.
For transitions between two eigenstates of H_{0}, l and k : The system evolves in eigenstates of H_{0} during the different time periods, with the time-dependent interactions V driving the transitions between these states. The time-ordered exponential accounts for all possible intermediate pathways.

Also:

$$
U^{\dagger}\left(\mathrm{t}, \mathrm{t}_{0}\right)=\mathrm{U}_{\mathrm{I}}^{\dagger}\left(\mathrm{t}, \mathrm{t}_{0}\right) \mathrm{U}_{0}^{\dagger}\left(\mathrm{t}, \mathrm{t}_{0}\right)=\exp _{-}\left[\frac{+\mathrm{i}}{\hbar} \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{~d} \tau \mathrm{~V}_{\mathrm{I}}(\tau)\right] \exp _{-}\left[\frac{+\mathrm{i}}{\hbar} \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{~d} \tau \mathrm{H}_{0}(\tau)\right]
$$

The expectation value of an operator is:

$$
\begin{aligned}
\langle A(t)\rangle & =\langle\psi(t)| A|\psi(t)\rangle \\
& =\left\langle\psi\left(t_{0}\right)\right| U^{\dagger}\left(t, t_{0}\right) A U\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle \\
& =\left\langle\psi\left(t_{0}\right)\right| U_{I}^{\dagger} U_{0}^{\dagger} A U_{0} U_{I}\left|\psi\left(t_{0}\right)\right\rangle \\
& =\left\langle\psi_{I}(t)\right| A_{I}\left|\psi_{I}(t)\right\rangle \\
A_{I} & \equiv U_{0}^{\dagger} A_{S} U_{0}
\end{aligned}
$$

Differentiating A_{I} gives:

$$
\frac{\partial}{\partial \mathrm{t}} \mathrm{~A}_{\mathrm{I}}=\frac{\mathrm{i}}{\hbar}\left[\mathrm{H}_{0}, \mathrm{~A}_{\mathrm{I}}\right]
$$

also, $\frac{\partial}{\partial \mathrm{t}}\left|\psi_{\mathrm{I}}\right\rangle=\frac{-\mathrm{i}}{\hbar} \mathrm{V}_{\mathrm{I}}(\mathrm{t})\left|\psi_{\mathrm{I}}\right\rangle$

Notice that the interaction representation is a partition between the Schrödinger and Heisenberg representations. Wavefunctions evolve under V_{I}, while operators evolve under H_{0}.

$$
\text { For } \mathrm{H}_{0}=0, \mathrm{~V}(\mathrm{t})=\mathrm{H} \Rightarrow \frac{\partial \mathrm{~A}}{\partial \mathrm{t}}=0 ; \quad \frac{\partial}{\partial \mathrm{t}}\left|\psi_{\mathrm{s}}\right\rangle=\frac{-\mathrm{i}}{\hbar} \mathrm{H}\left|\psi_{\mathrm{s}}\right\rangle \quad \text { Schrödinger }
$$

For $\mathrm{H}_{0}=\mathrm{H}, \mathrm{V}(\mathrm{t})=0 \Rightarrow \frac{\partial \mathrm{~A}}{\partial \mathrm{t}}=\frac{\mathrm{i}}{\hbar}[\mathrm{H}, \mathrm{A}] ; \quad \frac{\partial \psi}{\partial \mathrm{t}}=0 \quad$ Heisenberg

