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Photon Echo 
 

• Used to distinguish static and dynamic line-broadening, and time-scales for energy gap 

fluctuations.  The rephasing character of R2 and R3 allows you to separate homogeneous 

and inhomogeneous broadening.   

 
Remember linear spectroscopy can’t distinguish the two:   
 
 
 ( ) ( ) ( )21   abi g

ab eR ω τ ττ µ − −=  + c.c. 
 
 
For an inhomogeneous distribution, ( ) ( ) ( ) ( )1 1

ab ab abR  d  Z Rω ω ω= ∫  
  

 ( )
( )2

22
ba ba

baZ   exp
ω ω

ω
 − = − ∆ 
 

 

  
(or equivalently g t( )  =  Γbat + 1

2 ∆2 t2 ). If ∆ > Γ , we get a broad Gaussian line in our absorption 

spectrum. 

 
Now look at the experiment in which two pulses 

are crossed to generate a signal:  

  
 ksig  =  2k2 − k1    
     
  
 
 
The second and third interactions come from same pulse, so 2 0τ = and R2 = R3.   
 
 ( ) ( ) ( ) ( )3 3

ab ab abR  d  Z Rω ω ω= ∫  
 

Using our R2 expression from p. 155: 
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Special case of k3 + k2 − k1( ) 

Damps with homogeneous dephasing 

Peaked at 3 1τ τ=  
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For ∆ >> Γab , R 3( ) is sharply peaked at 1 3τ τ= , ( ) ( )
2 2

1 3 2
1 3

/
e

τ τ δ τ τ− − ∆ ≈ − .  The broad distribution 

of frequencies that rapidly dephased during 

τ1 is rephrased (or refocused) during τ3 

leading to a large constructive enhancement 

of the polarization at τ1=τ3: an echo.     

 

The observed signal for a pulse separation τ (setting τ1=τ) is the integrated signal radiated from 

the sample during τ3:  

 

 ( ) ( ) ( )
22 3

3 30sig sigI   E   d P ,τ τ τ τ
∞

= ∝ ∫  

 
In the inhomogeneous limit, we find 
 
 ( ) 4 ab

sig eI     ττ − Γ∝  
 
 
 
 
 
Transient Grating 
 

• Practical for looking at excitations with well defined spatial period/wavevector. 

The first two pulses are set time-coincident, so you can’t distinguish which field interacts first.  

Therefore, the signal will have contributions both from ksig = k1 − k2 + k3 and 1 2 3sigk k k k= − + + . 

That is the signal depends 

on R1+R2+R3+R4.  For 

ksig = k1 − k2 + k3  consider 

the terms contributing to the 

polarization after the first 

two interactions:   

 
 ( )3

1 2 3  TGP R E E E∼  
 
 

Inhomogeneity removed 

1τ 3τ
0

φ

sample
EaEb

Ec τ
sig a b ck k k k  = + − +
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For 1 0τ →  (pulses coincident), the first two fields create an excitation 
 
 ( ) ( )1 2 1 2 1 2 1 2  exp   . .TGP E E E E i t i k k r c cω ω = − − + − ⋅ + ∼  

 
If the beams are crossed at an angle 2θ :   
 

 
k 1 = k1 ˆ z cosθ + ˆ x sinθ( )
k 2 = k2 ˆ z cosθ − ˆ x sinθ( )

 

 

Taking ω1 = ω2  1 2
2i.e., nk k k π

λ
 = = = 
 

, then:   

 
 1 2  expTGP E E i k x ∆ ⋅ ∼  
 

 4 2  sin   nk π πθ
λ η

∆ = =    

 

 η  =  
λ

2nsinθ
  Fringe spacing    

 
This spatial modulation looks like a grating – a light/dark/light/dark pattern − with a periodicity 

η.  Excitation with this pulse pair leads to a periodic spatial variation of the complex index of 

refraction of the medium.   A time-delayed probe beam can scatter off this grating—constructive 

interference of scattered waves at Bragg angle.  For 1 2 3 sigω ω ω ω= = =  this the diffraction 

condition is incidence of k3 at an angle θ, leading to scattering of a signal out of the sample at an 

angle −θ.  We measure the intensity of the scattered light.   

 

Relaxation can be expressed in terms of the dissipation of the grating pattern in the sample.   

• Population relaxation leads to a decrease in its amplitude, observed as a decrease in 

diffraction efficiency. 

  ( ) 23 2 bb
sig eI   R   τ− Γ∝ ∝  

• Spatial diffusion processes along x erase the fringe pattern.  

• Rapid heating by the excitation pulses can launch counter propagating acoustic waves 

along x , which can modulate the diffracted beam at a rate given by the acoustic velocity. 

1k 2k2θ
ẑ

x̂
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CARS (Coherent Anti-Stokes Raman Scattering) 
 
Used to drive ground state vibrations with optical pulses or cw fields. 

 

• Two fields, with a frequency difference equal to a vibrational transition energy, are used 

to excite the vibration.   

• The first field is the “pump” and the second is the “Stokes” field.   

• A second interaction with the pump frequency lead to a signal that radiates at the anti-

Stokes frequency: 2sig P Sω ω ω= −  and the signal is observed background-free next to the 

transmitted pump field: 2sig P Sk k k= − . 

 
 

g
e

v
v

g g
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e g
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The experiment is described by R1 and R4, and the polarization is 
 

 
( )3 eg eg

eg eg

i
ev vg gv ve

i
eg ge

R e

e

ω τ τ

ω τ τ

µ µ µ µ

α α

− −Γ

− −Γ

=

=
 

 
The CARS experiment is similar to a linear experiment in which the lineshape is determined by 

the Fourier transform of ( ) ( ) ( )0C τ α τ α= . 

 

 

The same processes contribute to Optical Kerr Effect Experiments and Impulsive Stimulated 

Raman Scattering. 
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PUMP-PROBE (or transient absorption) 
 

• Follow population relaxation or wavepacket dynamics/quantum beats. 
 
This is perhaps the most widely used third-order nonlinear experiment. Two pulses are crossed in 

a sample.  An intense pump-pulse excited the system from equilibrium, and you watch the 

induced changes as a variation of intensity on a transmitted probe pulse. 

 
 
Here the third order signal is emitted on 

top of the transmitted field.  A decrease 

in absorption arises from a signal that is 

out of phase with the transmitted probe. 

 
 
Similar to the transient grating, the first and second interaction are with the pump pulse, and the 

final (third) interaction is with the probe.  The signals that can contribute to scattering along the 

probe are   ksig = k1 ∓ k2 + k3 , so all correlation functions 1R  to 4R  contribute.  The observed 

signal is  

  

 
( )

2 2
3 3 3

3

    2

 

sig sig sigI E E E E E

I I Tδ

∝ + = + +

= +

…

 

 
For a two-level system, we are sensitive to the relaxation of excited states   

 ( ) 43     bb
sig ab eE R τµ −Γ∝ ∝  

Here we have set τ = τ2. 
 
For excited electronic states with coupled vibrations, we can launch 

wave packets and follow their evolution.   The pump pulse creates 

excited state and ground state wavepackets: 

 
 
 
 
 

sample

τ
EpumpEprobe

k1

k2 detector
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• R1 and R3: Ground state wave packet. 

• R2 and R4: Excited state wave packet. 

 

a

b

c

d

a

b

c

d

R2R1

 
 

caie ω τ−
  dbie ω τ−

 
 
 
Pump-Probe Signal: 
 

 τ

δΙ(τ)

 
 

Wavepacket Dynamics: Quantum Beats in Pump-Probe 

Population Relaxation of Excited State: bbe τ−Γ  
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ENERGY GAP FLUCTUATIONS IN NONLINEAR SPECTROSCOPY 
 
How do transition energy gap fluctuations enter into the nonlinear response? 
 

For a system interacting with a fluctuating bath, we found that absorption lineshapes are given by 

the Fourier transform of the dipole correlation function 

 ( ) ( )2

0

eg
ti t

eg eg
iC t e exp d Hω

µµ µ τ τ−
+

− =  
 ∫=

  

which is written in terms of the energy gap Hamiltonian that linearly couples the system and bath 

nuclear coordinates.  Using the cumulant expansion, we can express it as an oscillating term at 

the transition frequency, and a lineshape function g t( )  which represents the bath interaction  

 ( ) ( )2
 egi t g t

eg e eC t ω
µµ µ − −=  

 

 
( ) ( ) ( )

( )

( ) ( ) ( )

2 0 0

1  0

0

t t

eg eg

C t

eg eg eg

g t dt dt H t H

C

δ δ

τ δω τ δω

′′

′

′′ ′ ′=

=

∫ ∫ ����	���
=  

 
For different forms of the energy gap fluctuations, we got different forms of our g t( ) :   
 
1) Bath fluctuations infinitely fast 
 
 ( ) ( )egC   τ δ τ= Γ  Γ is amplitude – infinitely fast decay 
 
 g t( )  =  Γ t   Phenomenological damping result 
 
2) Bath fluctuations infinitely slow 
 
 ( ) 2

egC   τ = ∆   ∆ is amplitude – no decay 
 
 g t( )  =  1

2 ∆2 t 2  Static bath - ∆ is distribution of frequencies 
 
3) Bath correlation function decays exponentially 
 
 ( ) ( )2

eg cC   exp t /τ τ= ∆ −  
 
 g t( )  =  ∆2 τc

2 exp −t / τ c( )+ t / τ c − 1[ ]  Stochastic model 
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We can construct any g t( )  we want:   
 
 g t( )  =  gi t( )

i
∑  

 
Alternatively, using the Brownian oscillator model, we can describe the signal in terms of the 

spectral density of fluctuations 

 

 ( ) ( ) ( )2 12
2eg eg
eC C

β ω

πω ρ ω ω ω
−−′′= =

=
�  

 

 

( ) ( ) ( )

( ) ( ) ( )

2

1 1
2

1
2

~

egC
g t d exp i t i t

d coth cos t i sin t t

+∞

−∞

+∞

−∞

ω
= ω − ω + ω −  π ω

 β ω  = ω ρ ω − ω + ω − ω    

∫

∫
=

 

 

We can construct an arbitrary bath from Brownian oscillators:   

 ( ) ( )eg i i
i

C   Cω ξ ω′′′′ = ∑   ξi : coupling coefficient 

 ( )
( )22 2 2 24

i
i

i i i

C   
m

ωω
ω ω ω

Γ′′ =
− + Γ

=  

 
 
Nonlinear Response with the Energy Gap Hamiltonian 
 
In a manner that parallels our description of the linear response from a system coupled to a bath, 

the nonlinear response can also be partitioned into a system, bath and energy gap Hamiltonian, 

leading to similar averages over the fluctuations of the energy gap.  The nonlinear response can 

be written as a sum of correlation functions such as 

( ) ( ) ( ) ( )1 1 2 31 3

1 2

3
4

2 1 2 3 0

egi
g eg eg eg

i i iR , , p e exp d H d H
τ τ τ τω τ τ

τ τ
τ τ τ µ τ τ τ τ

+ +− −
+ +

   = −   
   ∫ ∫= = =

 

This is the rephasing function R2 written for a two-level system. 
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Using the cumulant expansion, the third order response function for a two-level system can be 

rewritten in terms of our four correlation functions and the lineshape function for the system: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
3 4

3
1 2 3 1 2 3 1 2 3 1 2 3

1

*iR , ,   R , , R , ,α α
α

τ τ τ θ τ θ τ θ τ τ τ τ τ τ τ
=

   = −    
∑=

 

 
 

( ) ( ) ( ) ( ) ( ) ( )1 3
1 3 1 2 2 3 1 2 1 2 3

eg egi i * * *eR   exp g g g g g g

                                               

ω τ ω τ τ τ τ τ τ τ τ τ τ τ− −  = − − − + + + + − + +   

 
( ) ( ) ( ) ( ) ( ) ( )1 3

2 3 1 2 2 3 1 2 1 2 3
eg egi i * * * *eR   exp g g g g g g

                                               

ω τ ω τ τ τ τ τ τ τ τ τ τ τ−  = − − + − + − + + + +   

 
( ) ( ) ( ) ( ) ( ) ( )1 3

3 3 1 2 2 3 1 2 1 2 3
eg egi i * * * * *eR   exp g g g g g g

                                               

ω τ ω τ τ τ τ τ τ τ τ τ τ τ−  = − − + − + − + + + +   

 
( ) ( ) ( ) ( ) ( ) ( )1 3

4 3 1 2 2 3 1 2 1 2 3
eg egi i

eR   exp g g g g g g

                                               

ω τ ω τ τ τ τ τ τ τ τ τ τ τ− −= − − − + + + + − + +    

 
In this way, you can incorporate fluctuations (interactions with a bath/spectral diffusion) into 

nonlinear spectroscopies.   

 
 
Example:  For the two-pulse photon echo experiment example on p. 159:  
 

• Set ( ) 2 21
2egg t   t t= Γ + ∆ .   For this simple model g(t) is real. 

 
• Set τ2 = 0, giving ( ) ( ) ( )1 3

2 3 3 1 1 32 2eg egi i
eR  R   exp g g gω τ ω τ τ τ τ τ−= = − − + +    

 
• Substituting the g(t)expression we get the same result as before. 
 

 ( ) ( ) ( ) ( )2 2
1 3 1 3 1 33 2eg egi /

e e eR  ω τ τ τ τ τ τ− − −Γ + − − ∆∝
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1τ 3τ 3τ1τ=

1τ 3τ 3τ1τ=

1τ 3τ 3τ1τ=

abte−Γ

|Esig(τ1,τ3)|

How can you measure spectral diffusion? 
 
Back to the photon echo experiment…     First, let’s examine the polarization for a system with 

homogeneous and inhomogeneous broadening for varying ∆ / Γab : 

 
      
 
 
 
 
 
 
 

The polarization damps 
with Γab , but any 
inhomogeneity is 
rephased at 1 3τ τ= : An 
echo.  (width ~ 1 / ∆ ) 

   
 
 
 
 
 
 
 
 
 
 
 
 
Normally you detect the integrated intensity of this echo field.   
 

 

( ) ( )
2

3
3 30

2

24

( )

ab ab
ab

S   d P ,

 exp erfc

τ τ τ τ

τ τ

∞
∝

 Γ Γ = − Γ − ⋅ −∆ +   ∆ ∆  

∫
 

 
For ( ) 4 ab

ab   S    e ττ − Γ∆ >> Γ ∝  

For ( ) 2 ab
ab  S   e ττ − Γ∆ << Γ ∝      

(inhomogeneity removed!) 

∆ ≅ Γab  

∆ << Γab  

ab∆ >> Γ  

S(τ) 
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In between (∆ ≅ Γab ), the integrated signal S(τ) has a shape peaked after τ = 0 .   
 

    
τab∆ >> Γ

ab∆ << Γ

ab  ∆ ≈ Γ

τ ∗

S
(τ

) /S
(0

)

 
 

• The observation of a peak shift is an indication that there is imperfect ability to rephase.  
In this case, there is homogeneous dephasing competing with the rephasing of the 
inhomogeneity. 

 
 
Spectral diffusion randomizes phase; it destroys the ability for an echo to form by rephasing.  

We can study this by doing the echo experiment with three pulses:   

 
Lens Analogy:  For a distribution of oscillators with different frequencies, define phase  eiφ = ei δω i t( ) 
 
Two-Pulse Photon Echo: 

 1τ 3τ

0

φ

 
 
Add Extra Time Period. Three-Pulse Photon Echo: 

 1τ 3τ

0

φ

2τ  

Peak of signal in τ: 
τ* - the peak shift 

Rephasing 

No evolution of phase in τ2 – population ρbb 
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Add spectral diffusion: 
 

 1τ 3τ

0

φ

2τ  
 
     If the system can spectrally diffuse 

during τ2, the system will rephase 
poorly—echo gets washed out for 
larger values of τ2.   

 
• Since spectral diffusion destroys the rephasing, the system appears more and more 

“homogeneous” as τ2 is incremented.   

 

• One observes that the shift of the peak of the integrated echo changes with τ2 − It shifts 

back to zero.   

 2τ

τ ∗τ ∗
increasing values of 2τ

behaves like Ceg

 
 
The peak of the echo τ* shifts back with a rate dictated by the correlation function for 

relaxation/bath interactions.   

 
 ( ) ( )2

*
eg  Cτ τ τ∝  

 
If you use stochastic model ( ) ( )2 2 1c c cg t   exp t / t /τ τ τ= ∆ − + −   , you can see that 

( ) ( ) ( ) ( )2 2 0*
c eg eg  exp /τ τ τ τ δω τ δω∝ − ⇒ .   

 
You can use this method to determine the form to ( )egC τ  or ( )egC ω′′  or ρ ω( ). 

Waiting time 




