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Instructor: Prof. Andrei Tokmakoff

SPECTRAL DIFFUSION

We have discussed two limiting cases of line broadening:

Homogeneous:
The absorption lineshape is dynamically broadened by
variations in the amplitude, phase, or orientation of dipoles.

1 . o : . .
g B =y — Dephasing, Lifetime, Rotation — exponential decay time 7,
2
m‘ Z Note: Every molecule absorbs at same frequency.
eg
Inhomogeneous:

Static distribution of resonance frequencies.

Width of line represents distribution of frequencies (for

instance structural environments).

More generally, every system lies between these limits. Imagine every molecule having a

different “instantaneous frequency” @;(z) which evolves in time.

Spectral Diffusion

o, (t) evolves through a A i

Gaussian distribution of frequency. '

Note: If w;(¢) evolves slowly — inhomogeneous
If @, (¢) evolves rapidly — homogeneous

This can be modeled through a Gaussian-Stochastic Model for random Gaussian fluctuations.
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Gaussian-Stochastic Model for Spectral Diffusion

> The absorption lineshape derives from the dipole correlation function for the electronic or
vibrational transition.

> This in turn depends on the energy gap between the ground and excited state - @,,.

> If w,, is a function of time due to random fluctuations in the environment surrounding the
molecule:

o, (1) =(0)+8w,(1)

Then the absorption lineshape will be related to the fluctuations in the frequency
Gabs o <J.+OO dt eimt e_iw"gt > P J‘jw dt eimt e—l'<(x),3g>t e_g(t)

Let’s find the lineshape function, g(z).

Classical Description

To construct the effect of these random fluctuations on a spectrum, we can take the frequency

fluctuations oa(t) to be coupled to the variation of an internal variable 4.

Lo 4(0) - A)=4(0)ew|if d o(x)]

o(t) reflects random fluctuations about average value:
o(t)=(w)+80(r) <8c0(t)>=0
The frequencies fluctuate randomly through a Gaussian distribution of frequencies by a variance:

A :<§a)2>1/2

The fluctuations are characterized by a correlation time:

Om IA

- é [[ arex(1)50(0)
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A(1)= A(0)exp 1 [ldx m(t)}

=A(0)exp i<co>t+ij(i dt Sw(r)}

Coult)={4(r)4(0))=(|4] ) ¢ F (1)

where F(t)= <exp [zj; dt Sm(r)D :

Note that C,,(¢) looks similar to our typical dipole correlation function,

Cr ()=

and our dephasing function F(¢)=exp (— g (t)) .

2 o1t =8(0)

Heg , with the dipole moment playing the role of our internal variable 4,

To simplify F(¢), we can expand it perturbatively: cumulant expansion of averages.

F(1)= exp{iﬂ dr, <80)(’E] )> + Ll Otdrljot dt, <6w(11 )80)(12)> + }

First term = 0 Stationary: <5(D(T1 -7, )5@(0»

Only the second term survives for a system with Gaussian statistics to the fluctuations. This is a

classical description, so there is no time-ordering to the exponential.
F()= exp[—% [lax,[ dx, (30 (x —Tz)sm(o)ﬂ

F(t) can be rewritten through a change of variables (1=1,-1,):
F()= exp[— G (t—r)<6co(r)60)(0)>}

So the frequency fluctuations are described by a correlation function
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Cous (1) = (800(1)50(0))

A= <5(x)2 >1/2 T, :éf dt Cys, (r)

Now, we will calculate the lineshape assuming that the C; ;, decays exponentially

Then,

Csoso (t) = A exp[—t/rc]

F(t) =exp [Azri (exp(—t/rc)—kt/rc —1)]

Let’s look at the limiting forms of F(¢).

1)

Long correlation times (or equivalently short t).

For t < 7, we do short time expansion of exponential

2

it t
e Sl-t/t +—+...
2t

F(t) = exp(—A2 t /2)

At short times, you have a Gaussian decay with a rate oc A. This is good since our dipole

correlation function will be even C,, (1)= C.. (—1).

Now the absorption lineshape is:

c ((o) o J.jw dt e e ) F(t)

abs

For long correlation times, the frequency fluctuations are very slow and we expect an

effectively static ensemble



(¢

abs

Inhomogeneous lineshape.

2) Very short correlation times

F(1)= o) exp [—Az TJJ

const

1
or defining A T, ==
T

F(t)ocexp[—t/Tz]

(@)o J._m dre" ) g2
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(1,>1)

Gaussian shape

—t/t,

t>>71 -0

c

Lineshape: For very small correlation times we will have very fast fluctuations

+o0 (o B
O aps OCL dr &) g

(;)—((D)—i;2

homogeneous limit!

Overall Behavior:

The envelope of the dipole correlation
function will look Gaussian at short times

and exponential at long times.

Lorentzian shape

Gaussian
exponential
_—

F(t) i
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(If this were derived quantum mechanically from Heisenberg equation of motion for 4, then
F(t)= ¢4 with

g(t)= (_;lj ,[(i deJOTZ dr; {v(z)W0))



