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SPECTRAL DIFFUSION 
 
We have discussed two limiting cases of line broadening:   

 

Homogeneous:  

The absorption lineshape is dynamically broadened by 

variations in the amplitude, phase, or orientation of dipoles.   

→ Dephasing, Lifetime, Rotation → exponential decay time T2  

 

Note:  Every molecule absorbs at same frequency.   

 

Inhomogeneous:  

Static distribution of resonance frequencies. 

 

Width of line represents distribution of frequencies (for 

instance structural environments).   

 

 

 

More generally, every system lies between these limits.  Imagine every molecule having a 

different “instantaneous frequency” ωi t( )  which evolves in time.   
 

 

Spectral Diffusion 
 
ωi t( )  evolves through a  
Gaussian distribution of frequency.   
 
 
Note:   If ωi t( )  evolves slowly → inhomogeneous 
 If ωi t( )  evolves rapidly → homogeneous 
 
This can be modeled through a Gaussian-Stochastic Model for random Gaussian fluctuations. 
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Gaussian-Stochastic Model for Spectral Diffusion 
 
> The absorption lineshape derives from the dipole correlation function for the electronic or 

vibrational transition.   

> This in turn depends on the energy gap between the ground and excited state → ωeg .   

> If ωeg  is a function of time due to random fluctuations in the environment surrounding the 
molecule: 

 ( ) ( )i it tω = ω + δω  
 
Then the absorption lineshape will be related to the fluctuations in the frequency  
 

 ( )egeg i ti t g ti t i t
abs dt e e dt e e e

+∞ +∞ − ω− ω −ω ω

−∞ −∞
σ ∝ ⇔∫ ∫  

 
Let’s find the lineshape function, g(t).   
 
 
Classical Description 
 
To construct the effect of these random fluctuations on a spectrum, we can take the frequency 

fluctuations ( )tω  to be coupled to the variation of an internal variable A .   

 
 ( ) ( ) ( ) ( ){ }A t t ; t ; x t→ µ α …  
 

 ( ) ( ) ( ) ( ) ( )
0

0
tA i t A t A t A exp i d

t
∂  = ω → = τ ω τ  ∂ ∫  

 
ω t( ) reflects random fluctuations about average value:   
 
 ( ) ( ) ( ) 0t t tω = ω + δω δω =  
 
The frequencies fluctuate randomly through a Gaussian distribution of frequencies by a variance: 
 

 ∆ = δω2 1/2
  

 
The fluctuations are characterized by a correlation time:   
 

 τc =
1
∆2 dt

0

∞
∫ δω t( )δω 0( )  
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( ) ( ) ( )

( ) ( )

0

0

0

0

t

t

A t A exp i d

A exp i t i d

 = τ ω τ  

 = ω + τ δω τ  

∫

∫

 

 

 ( ) ( ) ( ) ( )20 i t
AAC t A t A A F te ω= =  

 

where ( ) ( )
0

t
F t exp i d = τδω τ  ∫ .   

 
Note that CAA t( )  looks similar to our typical dipole correlation function, 

Cµµ t( )= µeg
2 e−iω egt −g t( ) , with the dipole moment playing the role of our internal variable A, 

and our dephasing function   ( ) ( )( )F t exp g t= − .   

 

To simplify F t( ) , we can expand it perturbatively:  cumulant expansion of averages.   

 

 ( ) ( ) ( ) ( )
2

1 1 1 2 1 20 0 02
t t tiF t exp i d d d

!
 

= τ δω τ + τ τ δω τ δω τ + 
 
∫ ∫ ∫ …  

 
 
 
 
  
 
Only the second term survives for a system with Gaussian statistics to the fluctuations.  This is a 

classical description, so there is no time-ordering to the exponential. 

 ( ) ( ) ( )1
1 2 1 22 0 0

0
t t

F t exp d d = − τ τ δω τ − τ δω  ∫ ∫  

 
F t( )can be rewritten through a change of variables ( 1 2τ = τ − τ ): 
 

 ( ) ( ) ( ) ( )
0

0
t

F t exp d t = − τ − τ δω τ δω  ∫  

 
So the frequency fluctuations are described by a correlation function 

First term = 0 
Stationary:  ( ) ( )1 2 0δω τ − τ δω  
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( ) ( ) ( )

( )1 22
2 0

0

1/

c

C t t

d C

δωδω

∞

δωδω

= δω δω

∆ = δω τ = τ τ
∆ ∫

 

 
Now, we will calculate the lineshape assuming that the Cδωδω  decays exponentially 
 
 ( ) [ ]2

cC t exp t /δωδω = ∆ − τ  
 
Then, 
 
 ( ) ( )( )2 2 1c c cF t exp exp t / t / = ∆ τ − τ + τ −   
 
 
Let’s look at the limiting forms of F t( ) .   
 
 
1) Long correlation times (or equivalently short t).   
 
 For t < τc  we do short time expansion of exponential 
 

  

( ) ( )

2

2

2 2

1
2

2

ct /
c

c

tt /

F t exp t /

e− τ → − τ + +
τ

= −∆

…

 

 
 At short times, you have a Gaussian decay with a rate ∝ ∆ .  This is good since our dipole 

correlation function will be even  ( ) ( )C t C tµµ µµ= − . 
 
 Now the absorption lineshape is:  
 
  ( ) ( )i ti t

abs dt F te e
+∞ − ωω

−∞
σ ω ∝ ∫  

 
 

For long correlation times, the frequency fluctuations are very slow and we expect an 

effectively static ensemble  
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( ) ( ) ( )

( )

2 2 2

2

22

i t t /
abs cdt t t

exp Gaussian shape

e e
+∞ ω− ω −∆

−∞
σ ω ∝ >

 ω − ω
 ≈ −

∆ 
 

∫
 

 
 Inhomogeneous lineshape. 
 
 
2) Very short correlation times t >> τ c   e− t/τ c → 0  
 
  ( ) ( )2

2c
cF t e exp t− ∆τ  = −∆ τ   

 
 

 or defining ∆2τ c ≡
1
T2

 

  ( ) [ ]2F t exp t / T∝ −  
  
 
 Lineshape: For very small correlation times we will have very fast fluctuations 
 

  

( ) 2

2

1
1

i t t / T
abs dt

Lorentzian shape
i
T

e e
+∞ ω− ω −

−∞
σ ∝

≈
ω − ω −

∫
 

 
 
 
 
 
Overall Behavior: 
 
The envelope of the dipole correlation 

function will look Gaussian at short times 

and exponential at long times. 

 
 
 

homogeneous limit! 

const

( )F t

t
cτ

Gaussian
exponential



  Page 110 

 
 
 
 
(If this were derived quantum mechanically from Heisenberg equation of motion for A , then 
F t( ) = e−g t( ) with 
 

 
  
g t( ) =

−i
=

 
 

 
 

2
dτ2 dτ1 v τ1( )v 0( )

0

τ 2

∫0

t
∫  

 
 


