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COHERENT NONLINEAR SPECTROSCOPY 
 
Use external fields to generate a signal field through interaction with your system.  Measure 

generated field as a function of input fields (amplitude, phase, time, freq., polarization, k ).   

 

Detection: Coherent Spontaneous 

Linear:   

Absorption (variation of input field) 

 

 

 

Fluorescence  

Raman/Light scattering 

Iin

Iout

 
 

Nonlinear:  
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Fluorescence-detected NLS, for 

instance, SEP, TDFSS 
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We’ll discuss coherent nonlinear spectrosopies:  One or more input fields generate a 

macroscopic oscillating polarization that radiates a signal, for instance pump probe; transient 

gratings; photon echoes; coherent simulated Raman . . .  

 
The treatment is semi-classical: System: quantum; Field: classical.  Nth order perturbation theory 

is used to describe the nonlinear signal (response) derived from a sequence of N fields.   

Ein Eout

Iin Iout + Iδ=Iin
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We describe coherent spectroscopies by calculating the polarization, P : the macroscopic 

collective dipole moment/unit volume.   

 ( ) ( )m m
m

P r r R= µ δ −∑  sum over molecules 

     ( )m m m m  q r Rα α
α

µ ≡ −∑  sum over displacement of charges 

In coherent spectroscopies, the input fields act to create a macroscopic coherently oscillating 

charge distribution, which acts as a source to radiate a new electromagnetic field: the signal.  

Remember that an accelerated charge radiates an electric field.  The polarization in the electric 

dipole approximation is one term in the current and charge densities that you put into Maxwell’s 

equations.  

 

The polarization and signal fields depend on the frequency and wave vector of incident fields.   

 
(1)  ( ) ( ) ( )sig sigP r ,t   P t exp ik r i t   c.c.= ⋅ − ω +   
  
  sig in sig in

in in
k   k    = ± ω = ±ω∑ ∑  momentum and energy conservation 

The oscillating polarization radiates a coherent signal field, E sig , in a wave vector matched 

direction of constructive interference sigk . 

 

Remember from earlier: For a freely propagating E.M. wave, the wave equation for a transverse, 

plane wave was 

  ( ) ( )2
2

1 0E r   E r  
c

∇ − =  

which gave a solution for a sinusoidal oscillating field with frequency ω propagating along k.  If 

instead, we have the polarization acting as a source – an accelerated charge, we can write 

(2)  ( ) ( ) ( )2
2 2

1 4E r   E r   P r
c c

π
∇ − =  

Although one dipole would radiate in a sin θ distribution relative to the displacement of the 

charge, when you have a ensemble of dipoles that have been coherently driven by external fields, 
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P is given by (1) and the radiation of the ensemble only constructively adds along sigk .  For the 

radiated field we obtain 

  ( ) ( ) ( )sig sig sig sigE r ,t   E r ,t exp i k r i t   c.c.= ⋅ − ω +  

A further observation you can make is that the oscillating polarization is proportional to the 

signal field, although there is a π/2 phase shift between the two: 

  sigE i P∝ . 

 
 
 
Linear absorption spectroscopy.  Absorption is a coherent spectroscopy in which an E.M. 

field induces a polarization that radiates a signal field that is out of phase with the transmitted 

light.  To describe this, all of the relevant information is in R 1( ) t( ) or χ 1( ) ω( ) .   

 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

0

1

P t   t   d R  E t

P  E

∞
= µ − µ = τ τ − τ

ω = χ ω ⋅ ω

∫
 

 
 
 
 
 
For absorption, we found that the absorption lineshape was proportional to the imaginary part of 

the susceptibility: ′ ′ χ .   

 

 One input field 
 ωin  =  ωsig  
 
 kin  =  ksig  
 
  
 
 
 

Iout  =  Ein + Esig
2
 

( ) ( )
( ) ( ) ( ) ( )

1 4 

n n i

ε ω = + πχ ω

ε ω = ω = ω + κ ω

( )ε ω : dielectric constant 

( )n ω : Index of refraction 

( )κ ω : Absorption coefficient 

Ein
Etransmitted

Iin=|Ein|2 Iout + Iδ=Iin

kin Esig
ksig

P
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( )

( )

( )

2

2 2

22 1

1 2

out in sig

in in in

in

in out in

I   E E

 E iP   E i E

 E i i

 I I   I I

= +

= + = + χ

′ ′′= + χ + χ

′′= − χ ⋅ ⇒ = − δ…

 

    
   
    for inE χ  
 
Nonlinear Polarization.  For nonlinear spectroscopy, we will calculate the polarization P  

arising from interactions with multiple fields.  For our purposes, P t( )  =  µ t( ) , and we expand 

P  in powers of the incoming fields.   

 

 

( ) ( ) ( ) ( ) ( )

( )

0 1 2 3

1

nonlinear terms

P t   P P P P  

t   E

= + + + +

µ = µ + χ +

 

 
Earlier we wrote 
 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2
2 1 2 1 3 2 1 2 20 0

2 2
1 2 1 1 2 2

P t   d d  R , E t E t

P   ; , E E

∞ ∞
= τ τ τ τ − τ − τ − τ

ω = χ ω ω ω ω ω

∫ ∫
 

 
 
We will calculate P  from the density matrix:   
 

 

  

P t( )  =  Tr µ I t( )ρI t( )( )

=  P 0( ) + P 1( ) + P 2( )  +  …

=  Tr µ Iρ I
0( )( )+ Tr µ I ρ I

1( ) t( )( )+ Tr µI ρI
2( ) t( )( )+  …

 

( ) 2 inI   I′′δ = χ
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Here ρI
i( ) is the ith  order expansion of the density matrix from the solution to the Liouville 

equation: 

 

 ( ) ( ) ( ) ( )
0

0

t

I I I It

it   t dt V t , t′ ′ ′ρ = ρ − ρ  ∫ .   

 
Which we evaluate through iterative substitution: 
 

 

( ) ( )

( ) ( )

( ) ( ) ( )2

0
0

1
1 1

2
2

2 1 2 1

I eq

t

I I eq

t t

I I I eq

  t   

i  dt V t ,

i  dt dt V t , V t ,

−∞

−∞ −∞

ρ = ρ = ρ

 ρ = − ρ 

    ρ = − ρ     

∫

∫ ∫

 

 

 ( ) ( ) ( ) ( )2

1 1 1 1  , , , ,n
n

t t tn
I n n I n I n I eq

i dt dt dt V t V t V t− −−∞ −∞ −∞

      = −        ∫ ∫ ∫… … …ρ ρ  

 
Remember that the variables τi are defined as time intervals. Since the initial state of the system 

is equilibrium, we have set 0t = −∞ . 

 
Linear polarization:   
 

 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

1 1

0
0

I I

t

I I eq

t

I I eq

I I eq

P t   Tr t t

i Tr t dt t E t ,

i dt E t Tr t t ,

i d E t Tr ,

−∞

−∞

∞

= µ ρ

 ′ ′ ′ = µ −µ ρ   

− ′ ′ ′ = µ µ ρ 

= + τ − τ µ τ µ ρ  

∫

∫

∫

 

 
 
 
 

( ) ( )1R  τ
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( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

1 0

0

0

I I eq

*

I I eq

*
I eq I

iR   Tr ,

i C C

C Tr

C Tr

=   

= −

=

=

τ θ τ µ τ µ ρ

θ τ τ τ

τ µ τ µ ρ

τ µ τ ρ µ

 

 
 
Note, for ( ) ( )0E t E tτ δ τ− = −  the polarization is described by the response function.   
What about the nonlinear polarization?  
 
 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ){ }

2

2

2 2

2

2 1 2 1

2

2 1 2 2 1 1 2 1

2

2 1 2 2 1 2 1 1 2 10 0
0

I I

t t

I I I eq

t t

I I I eq

I I I eq

P t   Tr t t

i Tr t dt dt V t , V t ,

i dt dt  E t E t Tr t , t , t

i d d E t E t Tr , ,

−∞ −∞

−∞ −∞

∞ ∞

= µ ρ

    = µ − ρ     

   = µ µ µ ρ      

   = τ τ − τ − τ − τ µ τ + τ µ τ µ ρ      

∫ ∫

∫ ∫

∫ ∫

 

 
 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
2

2
1 2 1 2 1 2 1 0I I I eq

iR ,   Tr , ,   τ τ = θ τ θ τ µ τ + τ µ τ µ ρ      
 

 
 
Again, for delta function pulses, the nonlinear polarization is given by the response function. To 
arbitrary order the nonlinear response function R n( ) is 
 

Using [ ] [ ]A B, C,D A,B ,C ,D   =     
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ){ }
1 2 1 2

1 1 1 1 0

n
n

n n

I n n I n n I eq

iR , ,   

 Tr , ,− −

 τ τ τ = θ τ θ τ θ τ 
 

  × µ τ + τ + + τ µ τ + τ + τ µ ρ    

… …

… … …
 

 
The nonlinear response functions are sums of correlation functions ( )2n nR →   
 
• These correlation functions differ by whether operators act on the bra or ket side of ρ  when 

enforcing the time-ordering. 

 
Let’s look at R 2( ) and enforce the time-ordering: 
 
Term 1: 
 

 

( ) ( ) ( )( )

( )
( ) ( )

( ) ( )
( )

( )

( ) ( ) ( ) ( )( )

0 21 20 0

1 1 2 1

0 1 2 0 1 2 0 1 0 1

0 2 0 1 0 1 0 2

0

† †

I I I eq

† †
eq

† †
eq

UU U

Q Tr

Tr U U U U

Tr U U U U

ττ τ

= µ τ + τ µ τ µ ρ

 
 ⇒ τ + τ µ τ + τ τ µ τ µ ρ 
 
 

= µ τ µ τ µ ρ τ τ

 

(1) dipole acts on ket of ρeq 
(2) evolve under H0 during τ1. 
(3) dipole acts on ket τ1. 
(4) Evolve during τ2. 
(5) Multiply by µ and take 

trace. 
 

KET/KET interaction 
 
Each time the operator acted on ket side of ρ . Different correlation functions are distinguished 

by the order that they act on bra or ket.   

 

 
( ) ( ) ( )( )

( ) ( ) ( )( )

2 1 2 1

1 2 1

0

0

I I I eq

I I eq I

Q Tr

 Tr

= µ µ τ + τ µ τ ρ

= µ τ + τ µ τ ρ µ

 

 
   BRA/KET interaction  

Convention:  Final operator acts on ket side.   
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• Notice that bra side interaction is complex conjugate of ket side.  

 1 1 2 2
* *Q   ket / ket  Q   bra / bra  Q   ket / bra  Q bra / ket⇒ ⇒ ⇒ = .   

• For R n( ), you really only need 2n−1 correlation functions.   

 

So for R(2) we write 

 

 

( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( )

2
2

1 2 1 2 1

2 2
2 *

1 2 1 2 1 2
1

  , , 0

  , ,

I I I eq
iR Tr

iR Q Q
=

   = +      

   = −    
∑ α α
α

θ τ θ τ µ τ τ µ τ µ ρ

θ τ θ τ τ τ τ τ

 

 
  
  ket/ket ( ) ( ) ( )1 1 2 1 0I I I eqQ   Tr  = + µ τ τ µ τ µ ρ  

 
  ket/bra ( ) ( ) ( ) ( ) ( ) ( )2 1 1 2 1 2 10 0I I I eq I I eq IQ   Tr   Tr   = + = +   µ τ µ τ τ µ ρ µ τ τ µ ρ µ τ  
 

 
 
Third Order Response 

Since R(2) orientationally averages to zero for isotropic systems, the third order response 

describes most experiments. 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( )

3
3

1 2 3 3 2 1 1 2 3 1 2 1

3 4
*

3 2 1 3 2 1 3 2 1
1

, ,    , , , 0

 , , , ,

I I I I eq
iR Tr

i R R
=

 = + + +         

   = −    
∑ α α
α

τ τ τ θ τ θ τ θ τ µ τ τ τ µ τ τ µ τ µ ρ

θ τ θ τ θ τ τ τ τ τ τ τ

 

 
  
R1 ⇒ ket / ket / ket   R2 ⇒ bra / ket / bra  R3 ⇒ bra / bra / ket  R4 ⇒ ket / bra / bra  
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The individual correlation function can be explicitly written in terms of a sum over all possible 

intermediate states.  For a third-order experiment, this means up to four states involves in the 

process.  (Third-order nonlinear experiments can also be referred to a four-wave mixing).  

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2 3 1 2 1
, , ,

2 1 2 1 2 3 1
, , ,

3 1 1 2 3 1 2
, , ,

4 1 1 2 1 2 3
, , ,

0

0

0

0

a ad dc cb ba
a b c d

a ad dc cb ba
a b c d

a ad dc cb ba
a b c d

a ad dc cb ba
a b c d

R p

R p

R p

R p

µ τ τ τ µ τ τ µ τ µ

µ µ τ τ µ τ τ τ µ τ

µ µ τ µ τ τ τ µ τ τ

µ τ µ τ τ µ τ τ τ µ

= + + +

= + + +

= + + +

= + + +

∑

∑

∑

∑

 

 
 
General Expressions for nth Order Nonlinearity 
 
 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 1 10 0

n n
n n n n nP t  d d R , , E t E t

∞ ∞
= τ τ τ τ τ − τ − − τ − τ∫ ∫ …  

 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ){ }
1 2 1 2

1 1 1 1 0

n
n

n n

I n n I n n I eq

iR , ,   

 Tr , ,− −

 τ τ τ = θ τ θ τ θ τ 
 

  × µ τ + τ + + τ µ τ + τ + τ µ ρ    

… …

… … …
 

 
 
For delta function pulses: ( ) ( )1 0 1 0E t t E t t− = δ −  the polarization and response function are 

directly proportional ( ) ( ) ( ) ( )1 2 1 1
n n

n nP t  R , , ,t E E−= τ τ τ… . 
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Propagating the density matrix 
 
Our nonlinear response functions for the nonlinear polarization are sequences of interaction with 

the field (dipole operator) followed by propagation of the system under the equilibrium 

Hamiltonian.  We can represent the evolution with a time-propagator G (super operator).   

 

 

[ ]

( ) ( ) ( )†
0 0

,I I I I I

I I I I

i iV

t U U t G t

− −
= ⇔ =

= ⇔ =

ρ ρ ρ ρ

ρ ρ ρ ρ

L

 

 
for a particular element of density matrix 
 

 

( )

0 0

†
0 0

/ /

  

 

 ( / )ab

ab

iH t t iH t

i t

G t U a b U

e a b e

e a b for eigenstates no bath damping

− +

−

=

=

= ω

ρ

 

 
 
To include propagation of the system with phenomenological relaxation, we can write 
 
 ( ) [ ]ab ab ab abG t   exp i t t= − − Γρ ω ρ  ab baΓ = Γ  *

ab baG G=  
 
  
 Γii →   population relaxation 1

T1( ) Γij →  dephasing (coherence) 1
T2( )  

 

Liouvillian 
super-operator 

Time propagator 


