MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.74 Quantum Mechanics II Spring, 2004

Professor Robert W. Field

Problem Set #7

DUE: At the start of Lecture on Friday, April 23.

Reading: HLB-RWF 9.1.7, 9.1.8, 9.4.9, 9.2.1, 9.2.2, 9.2.3, 9.2.4

Problems:

I. <u>One-Color Pump-Probe Experiment</u>.

Consider a three-level system.

Pulses (1) and (2) are obtained by splitting a 100fs laser pulse into two identical pulses and systematically delaying pulse (2) relative to pulse (1) using a delay line.

The intensity of pulse (1) is set so that, immediately after pulse (1) has exited the sample

$$\Psi(0) = [1 - 0.02]^{1/2} \psi_g + 0.1 \psi_{e1} + 0.1 \psi_{e2}.$$

A. For excitation by pulse (1) only, what does $P(t) = |\langle \Psi(t) | \Psi(0) \rangle|^2$ look like?

B. For excitation at t = 0 by both pulses (1) and (2), with zero delay between the two pulses, what is $\Psi(0)$? Be extremely careful to justify your value for the coefficients in front of ψ_{e1} and ψ_{e2} .

C. For excitation at
$$t = 0$$
 by pulse (1) and $t = \tau$ by pulse (2), what is $\Psi(\tau)$?

D. Compute
$$P(t-\tau) = \left| \left\langle \Psi(t-\tau) | \Psi(\tau) \right\rangle \right|^2$$
 for $t = 0$, $\tau = \frac{2\pi}{\omega_{e2,e1}} (1/4)$, and $\tau = \frac{2\pi}{\omega_{e2,e1}} (1/2)$.

- E. Suppose you were going to monitor $P(t \tau)$ in a fluorescence-dip scheme. Describe this one-color pump-probe fluorescence-dip experiment in the $\rho(0)$, **E**, **U**, **D** formulation.
- F. Consider an experiment in which you have a cw laser oscillating at $\left(\frac{E_{e2} + E_{e1}}{2} E_g\right)/\hbar = \omega_{cw}$. Your excitation pulse at t = 0 is obtained by pulse amplifying ω_{cw} from ~1mW cw to a 100fs, 1µJ pulse (peak power 10⁷W). The laser beam traverses your sample and impinges on a "square law" detector. The signal is

$$I(t) \propto \left| \varepsilon_{\text{laser}}(t) + \varepsilon_{\text{molecule}}(t) \right|^2$$
.

Use the ρ , **E**, **U**, **D** formulation to describe I(t) at t > 0 for a single amplified pulse at t = 0.

II. <u>Anharmonic Coupling</u>

$$\mathbf{H} = \mathbf{h}_{1} + \mathbf{h}_{2} + \mathbf{h}_{12}$$

$$\mathbf{h}_{1} / hc = (\omega_{1}/2) (\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} + \mathbf{a}_{1} \mathbf{a}_{1}^{\dagger}) + (x_{11}/4) (\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} + \mathbf{a}_{1} \mathbf{a}_{1}^{\dagger})^{2}$$

$$\mathbf{h}_{2} / hc = (\omega_{2}/2) (\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} + \mathbf{a}_{2} \mathbf{a}_{2}^{\dagger}) + (x_{22}/4) (\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} + \mathbf{a}_{2} \mathbf{a}_{2}^{\dagger})^{2}$$

$$\mathbf{h}_{12} / hc = k_{122} (\mathbf{a}_{1}^{\dagger} + \mathbf{a}_{1}) (\mathbf{a}_{2}^{\dagger} + \mathbf{a}_{2})^{2}$$

where ω_1 , x_{11} , ω_2 , x_{22} , and k_{122} are in cm⁻¹ units.

The goal of this problem is to discover how (or whether) it is possible to determine experimentally the sign of k_{122} . This sign is physically significant because, if $k_{122} > 0$, then when bond 1 (**Q**₁) is stretched the oscillation frequency of bond 2 is *increased*, and, if $k_{122} < 0$, stretching bond 1 *decreases* the oscillation frequency of bond 2.

The energy levels of this two-mode oscillator are described by an \mathbf{H}^{eff} that has diagonal elements

$$E^{(0)}(v_1, v_2)/hc = \omega_1(v_1 + 1/2) + \omega_2(v_2 + 1/2) + x_{11}(v_1 + 1/2)^2 + x_{22}(v_2 + 1/2)^2 + x_{12}(v_1 + 1/2)(v_2 + 1/2)$$

and, because $\omega_1 \approx 2\omega_2$, is arranged in quasi-degenerate polyad blocks, each block with polyad quantum number $P = 2v_1 + v_2$. The off-diagonal matrix elements within each polyad block are

$$\mathbf{\Omega} + \mathbf{\Omega}^{\dagger} \equiv k_{122} \Big[\mathbf{a}_1 \mathbf{a}_2^{\dagger} \mathbf{a}_2^{\dagger} + \mathbf{a}_1^{\dagger} \mathbf{a}_2 \mathbf{a}_2 \Big]$$

and the nonzero elements follow the selection rule $2\Delta v_1 = -\Delta v_2$.

A. Set up the P = 10 polyad block of **H**. This is a 6×6 matrix. Let $\omega_1 = 1000 \text{ cm}^{-1}, \omega_2 = 500 \text{ cm}^{-1}, x_{11} = 10 \text{ cm}^{-1}, x_{22} = 5 \text{ cm}^{-1}, x_{12} = 0$, and $k_{122} = \pm 100 \text{ cm}^{-1}$. Solve for the energy levels for $k_{122} = 100 \text{ cm}^{-1}$ and $k_{122} = -100 \text{ cm}^{-1}$. Is the sign of k_{122} an observable quantity? If it is not, you can skip part B, unless you have a clever idea for how to sample the sign of k_{122} in the time domain.

- B. Use the operator algebra from Lecture #8 (Resonance Operators: Equations of Motion) to propose a time domain observable quantity that is sensitive to the sign of k_{122} .
- C. Examine the time dependence of $\langle \mathbf{a}_1^{\dagger} \mathbf{a}_1 \rangle_t$ for each of the six possible single basis-state plucks of the P = 10 polyad. Which pluck is most sensitive to the value of k_{122} ?
- D. Examine the time dependence of the expectation value $\langle \mathbf{\Omega} + \mathbf{\Omega}^{\dagger} \rangle_{t}$ for each of the six possible single basis-state plucks of the P = 10 polyad. Which pluck is most sensitive to the value of k_{122} ?
- E. If you conclude that the sign of k_{122} is not an observable quantity, replace \mathbf{h}_{12} by

 $\mathbf{h}_{12} = k_{1122} (\mathbf{a}_1^{\dagger} + \mathbf{a}_1)^2 (\mathbf{a}_2^{\dagger} + \mathbf{a}_2)^2$

and let $\omega_1 = \omega_2 = 1000 \text{ cm}^{-1}$, $x_{11} = x_{22} = 10 \text{ cm}^{-1}$, and $k_{1122} = \pm 100 \text{ cm}^{-1}$. Show that the sign of k_{1122} is an observable quantity.