MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.74 Quantum Mechanics II
 Spring, 2004

Professor Robert W. Field

Problem Set \#7

DUE: At the start of Lecture on Friday, April 23.
Reading: HLB-RWF 9.1.7, 9.1.8, 9.4.9, 9.2.1, 9.2.2, 9.2.3, 9.2.4

Problems:

I. One-Color Pump-Probe Experiment.

Consider a three-level system.

Pulses (1) and (2) are obtained by splitting a 100 fs laser pulse into two identical pulses and systematically delaying pulse (2) relative to pulse (1) using a delay line.

The intensity of pulse (1) is set so that, immediately after pulse (1) has exited the sample

$$
\Psi(0)=[1-0.02]^{1 / 2} \psi_{g}+0.1 \psi_{e 1}+0.1 \psi_{e 2}
$$

A. For excitation by pulse (1) only, what does $P(t)=|\langle\Psi(t) \mid \Psi(0)\rangle|^{2}$ look like?
B. For excitation at $t=0$ by both pulses (1) and (2), with zero delay between the two pulses, what is $\Psi(0)$? Be extremely careful to justify your value for the coefficients in front of $\psi_{\mathrm{e} 1}$ and $\psi_{\mathrm{e} 2}$.
C. For excitation at $t=0$ by pulse (1) and $t=\tau$ by pulse (2), what is $\Psi(\tau)$?
D. Compute $P(t-\tau)=|\langle\Psi(t-\tau) \mid \Psi(\tau)\rangle|^{2}$ for $t=0, \tau=\frac{2 \pi}{\omega_{e 2, e 1}}(1 / 4)$, and $\tau=\frac{2 \pi}{\omega_{e 2, e 1}}(1 / 2)$.
E. Suppose you were going to monitor $\mathrm{P}(t-\tau)$ in a fluorescence-dip scheme. Describe this one-color pump-probe fluorescence-dip experiment in the $\boldsymbol{\rho}(0), \mathbf{E}, \mathbf{U}, \mathbf{D}$ formulation.
F. Consider an experiment in which you have a cw laser oscillating at $\left(\frac{E_{e 2}+E_{e 1}}{2}-E_{g}\right) / \hbar=\omega_{\mathrm{cw}}$. Your excitation pulse at $t=0$ is obtained by pulse amplifying ω_{cw} from $\sim 1 \mathrm{~mW}$ cw to a $100 \mathrm{fs}, 1 \mu \mathrm{~J}$ pulse (peak power $10^{7} \mathrm{~W}$). The laser beam traverses your sample and impinges on a "square law" detector. The signal is

$$
I(t) \propto\left|\varepsilon_{\text {laser }}(t)+\varepsilon_{\text {molecule }}(t)\right|^{2}
$$

Use the $\mathbf{\rho}, \mathbf{E}, \mathbf{U}, \mathbf{D}$ formulation to describe $I(t)$ at $t>0$ for a single amplified pulse at $t=0$.
II. Anharmonic Coupling
$\mathbf{H}=\mathbf{h}_{1}+\mathbf{h}_{2}+\mathbf{h}_{12}$
$\mathbf{h}_{\mathbf{1}} / h c=\left(\omega_{1} / 2\right)\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{a}_{1} \mathbf{a}_{1}^{\dagger}\right)+\left(x_{11} / 4\right)\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{a}_{1} \mathbf{a}_{1}^{\dagger}\right)^{2}$
$\mathbf{h}_{2} / h c=\left(\omega_{2} / 2\right)\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{a}_{2} \mathbf{a}_{2}^{\dagger}\right)+\left(x_{22} / 4\right)\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}+\mathbf{a}_{2} \mathbf{a}_{2}^{\dagger}\right)^{2}$
$\mathbf{h}_{12} / h c=k_{122}\left(\mathbf{a}_{1}^{\dagger}+\mathbf{a}_{1}\right)\left(\mathbf{a}_{2}^{\dagger}+\mathbf{a}_{2}\right)^{2}$
where $\omega_{1}, x_{11}, \omega_{2}, x_{22}$, and k_{122} are in cm^{-1} units.

The goal of this problem is to discover how (or whether) it is possible to determine experimentally the sign of k_{122}. This sign is physically significant because, if $k_{122}>0$, then when bond $1\left(\mathbf{Q}_{1}\right)$ is stretched the oscillation frequency of bond 2 is increased, and, if $k_{122}<0$, stretching bond 1 decreases the oscillation frequency of bond 2 .

The energy levels of this two-mode oscillator are described by an $\mathbf{H}^{\text {eff }}$ that has diagonal elements

$$
\begin{aligned}
E^{(0)}\left(v_{1}, v_{2}\right) / h c & =\omega_{1}\left(v_{1}+1 / 2\right)+\omega_{2}\left(v_{2}+1 / 2\right)+x_{11}\left(v_{1}+1 / 2\right)^{2} \\
& +x_{22}\left(v_{2}+1 / 2\right)^{2}+x_{12}\left(v_{1}+1 / 2\right)\left(v_{2}+1 / 2\right)
\end{aligned}
$$

and, because $\omega_{1} \approx 2 \omega_{2}$, is arranged in quasi-degenerate polyad blocks, each block with polyad quantum number $\mathrm{P}=2 v_{1}+v_{2}$. The off-diagonal matrix elements within each polyad block are

$$
\boldsymbol{\Omega}+\boldsymbol{\Omega}^{\dagger} \equiv k_{122}\left[\mathbf{a}_{1} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}^{\dagger}+\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2} \mathbf{a}_{2}\right]
$$

and the nonzero elements follow the selection rule $2 \Delta \mathrm{v}_{1}=-\Delta \mathrm{v}_{2}$.
A. Set up the $P=10$ polyad block of \mathbf{H}. This is a 6×6 matrix. Let

$$
\begin{aligned}
& \omega_{1}=1000 \mathrm{~cm}^{-1}, \omega_{2}=500 \mathrm{~cm}^{-1}, x_{11}=10 \mathrm{~cm}^{-1}, x_{22}=5 \mathrm{~cm}^{-1}, x_{12}=0, \text { and } \\
& k_{122}= \pm 100 \mathrm{~cm}^{-1} . \text { Solve for the energy levels for } k_{122}=100 \mathrm{~cm}^{-1} \text { and } \\
& k_{122}=-100 \mathrm{~cm}^{-1} . \text { Is the sign of } k_{122} \text { an observable quantity? If it is not, }
\end{aligned}
$$

you can skip part B, unless you have a clever idea for how to sample the sign of k_{122} in the time domain.
B. Use the operator algebra from Lecture \#8 (Resonance Operators:

Equations of Motion) to propose a time domain observable quantity that is sensitive to the sign of k_{122}.
C. Examine the time dependence of $\left\langle\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}\right\rangle_{t}$ for each of the six possible single basis-state plucks of the $P=10$ polyad. Which pluck is most sensitive to the value of k_{122} ?
D. Examine the time dependence of the expectation value $\langle\boldsymbol{\Omega}+\boldsymbol{\Omega}\rangle_{\mathrm{t}}$ for each of the six possible single basis-state plucks of the $P=10$ polyad. Which pluck is most sensitive to the value of k_{122} ?
E. If you conclude that the sign of k_{122} is not an observable quantity, replace h_{12} by

$$
\mathbf{h}_{12}=k_{1122}\left(\mathbf{a}_{1}^{\dagger}+\mathbf{a}_{1}\right)^{2}\left(\mathbf{a}_{2}^{\dagger}+\mathbf{a}_{2}\right)^{2}
$$

and let $\omega_{1}=\omega_{2}=1000 \mathrm{~cm}^{-1}, x_{11}=x_{22}=10 \mathrm{~cm}^{-1}$, and $k_{1122}= \pm 100 \mathrm{~cm}^{-1}$.
Show that the sign of k_{1122} is an observable quantity.

