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LINEAR RESPONSE THEORY

We have statistically described the time-dependent behavior of an internal variable in an
equilibrium system through correlation functions, and now we would like to relate that to

experimental observables. That is, how does the system respond, if you drive it from
equilibrium?

Equilibrium
System

weak coupling
@\N\ External Agent

k internal variable

> The system is moved away from equilibrium by external agent.
> The system absorbs energy from external agent.

What are the time-dependent properties of the system?

H=H,-f(t) 4

Z /Q/ Internal variable

Time-dependence of external agent

Hamiltonian of equilibrium state

A S

A(t)
We average over an ensemble, each
member of which is subject to same

perturbation.
----------------- (A)
>
to t < . > = average over equilibrium ensemble
external force applied at 4, ... = average over nonequilibrium ensemble

moving system from {A4)

<A> + A (t) due to interaction



Let’s develop It) as an expansion in power of f(¢).

M = (terms f(o) ) + (terms f(l) ) +

A()= (A) + [ diy RV (1.1,) f () +...

R"(z,1,): Linear Response Function
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The force is applied at #,, and we observe the system at . The linear response function is the

quantity that contains the microscopic information that describes how the system responds to the

applied force. We will look to find a quantum description of R

Rationalization for an expansion of A(f) in powers of £ (¢):

Let’s break time up into infinitesimal intervals:

A A A

| | | | -

th b ts te - £ =iA f(f,-):fi
AW =4 =4 . fi o firn f;)

Now, Taylor series expand about all f; =0

TR 04,
A(t)=4/(...0,0,0) + z(—J f,
& ),

) .
Value with no Sum over change due to force
fapplied at all times of application

Linear term:

04, 1 04,
5o - e

lim =[" arR(1.1,) 1 (1))

A—0
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Causality: The system cannot respond before the force has been applied.
R" (t,4,)=0 for t<1,

The time-dependent change in 4 is

84(t)=A(t)—(Ay=[" d, R"(1.8,) £ (1,)

Stationarity: The time-dependence of the system only depends on the time interval between

application of force and observation.

RY(2,4,)=R" (t~1,)

So,
S5A(r) = I_:O dig RVt ~10)f (to)

The response of the system is a convolution of the material response with the time-development

of the applied force.

Usually, we define the time interval t=17—¢,

84(t)=["dr RV (z) f (t-7)

Impulse response. For a delta function perturbation:

f()=26(t—19)

540) = 2RV (t-1,)
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Freguency-Domain Representation

=I0wdr R(l)(‘t)f(l‘—‘t)

Fourier Transform both sides:

SM f:dt U:dt R" (’E)f(l‘—’t):| e

>

insert (e—za)r e+za)r)

[Tar[ axe™ ™ RY () f(e-7)
settingt' =t—1 dt' =dt

=[Tar e (1) [ de R (x)

7o i M
susceptibility .
Fourier-Laplace transform
F.T. \/

SA((O) = x(o)) f((o) spectral response

A convolution of the force and response in time leads to the product of the force and response in

frequency. This is a manifestation of the convolution theorem:

A()®@B(t)=[" duvA(t-7)B(x)=[ dv A(x)B(t-7)=F7 4(0) B(w)]

where ;l(c)) = f[A(t)] and i[- . ] is a Fourier transform.

Note that R(l)(z') is real, since the response of a system is an observable.

The susceptibility y(@) is complex. We will relate C,, (1) to RY(7) ando,, (0) to y(w).
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x(@)=x (o) +ir" (o) A
x(o)= J: dt RV (t)"

= J.: dtR" (t)cos T+ .[: dtRY (r)sin T

1’ even in frequency x": odd in frequency

1'(@)=Re| F(R" (<)) | "(@)=m|F(R"(x)) | .
¥ (@)= y'(-0)
7"(0)=-1"(-o) noxe)=7 ()

Notice also 7'(@)=3[x(@)+ H-0)]

1"(@)=%[Hw)- y(-o)]
/@)

KRAMERS-KRONIG RELATIONS

A consequence of causality is that y'(@) is not independent of y"(®):
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These are obtained from

x ()= J.:R(l) (1) coswt dt
and
R ()= [y (o) sinor dr
Y-

Substituting:

x ()= %J‘: dt cos mt“‘j:x”(m')sin o'tdo

1 . to r..n ! R . !
=—Ilim | do'y ((o)_[ cos ot sinw't dt
T R0 J— 0

using cos ax sinbx :%Sin(a +b)x+%sin (b—a)x

- +wdm,x”(®)%{—cos(m’+03)R+1_c0s((o ’—(o)R+1
TR0 J=n o+ 0 -0

If we choose R — o, the cosine terms vanish since they oscillate rapidly. This is equivalent to

averaging over a monochromatic field. If we instead average over a single cycle:

R=2n/(0'-w), we obtain

’ 1 . ,X” o
hé ((D)ZEP-LOO dﬂ)ﬁ

The other relation can be derived the same way.
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Example: Classical Response

Model absorption of radiation by dipoles with a forced damped harmonic oscillator:
X+yx+opx=F(r)

E
For an E.M. wave: F (1) =F, cos ot = 90 cos oot
m

_ 4k, 1

m |:((0§ e )2 +Y2032

7 cos((ot+8)

[(wi o)+’ T

An impulsive driving force gives the response function: x(¢)= J.: dtR" (1) f(t—7)
if F(t)= Fyo(t -1, ), then x(t)= Fy RV(r):

R(l)(r):%exp(—%szinQr Q= co(z)—yz/4
m

f 1 1
Ty << X((D)NZmOJ O—0,+iy/2
0 0

i = I/m
y o -0 +iyo  oroxo,

o’ -0y =(0+0, ) (0-0,) =20, (0-0,) ~ 20(0 -0, )

\J

ol N 1 R 1
x 2may, (0, —0)+iyo  2mo, (

m0_®)+%v
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Nonlinear Response Functions

If the system does not respond in a manner linearly proportional to the applied force, we can

include nonlinear terms: the higher expansion orders in A4(¢). Let’s look at second order:

54(t) J'dtjdt R (14,8, £(1) /5 (1)
Again we are integrating over the entire history of the application of two forces f; and f>,

including any quadratic dependence on f.

apply fi apply f observe

P

t; t, t time

In this case, we will enforce causality through a time ordering that requires (1) that all forces

must be applied before a response is observed and (2) that the application of /> must follow f;:
(>1>1 oo RY(t1,6)=RY.-0(t-1,)-0(r,-1,)

SM(Z) = I;dtzfj;dth(z) (:0,6) £,(8) /> (1)

Now we will call the system stationary so that we are only concerned with the time intervals

between interactions.

—= 4 )
SA(t) =Loa’t2 Lodt1 R (t—ty,, 1) £(1,) f3(1,)
If we define the intervals between adjacent interactions

n=0H-04 =11 Ti T
-t il L

t t t
—J. drlj. dt, R (1,%,) fi(t—1,-1,) £, (1-1,)



