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LINEAR RESPONSE THEORY 

We have statistically described the time-dependent behavior of an internal variable in an 
equilibrium system through correlation functions, and now we would like to relate that to 
experimental observables.  That is, how does the system respond, if you drive it from 
equilibrium? 

Equilibrium 

System


weak coupling 

internal variable 

A lExterna  Agent 

> The system is moved away from equilibrium by external agent.   


> The system absorbs energy from external agent.   


What are the time-dependent properties of the system?


H H0 − f (t ) A= 

Internal variable 

Time-dependence of external agent 

Hamiltonian of equilibrium state 

A t( )
We average over an ensemble, each 
member of which is subject to same 
perturbation. 

A 

t0external force applied at 

t0 t … ≡ average over equilibrium ensemble 

… ≡ average over nonequilibrium ensemble 

moving system from A 
( ) due to interaction A ≠ A t 
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( ) as an expansion in power of f tLet’s develop A t ( ). 

A t 0 1( ) = (terms f ( ) ) + (terms f ( ) ) +… 

+∞ 1A t  A  dt  0 R( ) (t  ,t  0 ) f (t ) +…( ) = 0+ ∫−∞


R(1) (t ,t  ) : Linear Response Function0 

The force is applied at t0 , and we observe the system at t . The linear response function is the 

quantity that contains the microscopic information that describes how the system responds to the 
)applied force. We will look to find a quantum description of R(1 . 

A t( ) f t( ): 

∆ 

t1 t2 t3 t4 

∆ ∆  

" 
it i= ∆ ( )i if t f= 

A ti( )= Ai = Ai … , fi −2 , fi−1, fi( ) 

Now, Taylor series expand about all fi = 0 
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AA t  A  ,  ,  f  
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 ∂ 
= + +  ∂  

∑… … �� 
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j j 

j jj jf 

t 
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A Af j f
f j f 

lim f t 

= 

−∞∆→ 

   ∂ ∂ 
= ∆    ∂      

= 

∑ ∑ 

∫ 

f 

Rationalization for an expansion of  in powers of 

Let’s break time up into infinitesimal intervals: 

�	��

Linear term: 

dt R t ,t 

∆ ∂  

Value with no 
applied 

Sum over change due to force 
at all times of application 
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Causality:  The system cannot respond before the force has been applied.   

R(1) (t ,t  ) = 0 for t < t00 

The time-dependent change in A is 

t 1( ) = A tδA t  ( ) − A  dt  R  ( ) (t ,t  0 ) f (t0 )0 = ∫−∞ 

Stationarity:  The time-dependence of the system only depends on the time interval between 

application of force and observation. 

R(1) (t ,t  ) = R(1) (t − t0 )0 

So, 
δ A t

t ( )  t − t0 ( )( ) = ∫−∞ 
dt0 R 1 ( )f t0

The response of the system is a convolution of the material response with the time-development 


of the applied force. 


Usually, we define the time interval τ = − 
t t0 

1( ) =
∞ 

τδA t  ∫0 
dτ R( ) ( ) f (t − τ) 

Impulse response. For a delta function perturbation: 

f t( )= λδ(t − t0)


( )  t − t0
δ A t( ) = λR 1 ( ) 
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Frequency-Domain Representation 

1( ) =
∞ 

τδA t  ∫0 
d τ R( ) ( ) f (t − τ) 

Fourier Transform both sides:   

A( )
+∞ ∞ 1 τ i tωδ ω ∫−∞ 

dt   d τ R( ) ( ) f (t − τ)


e∫ 0  

−iωτ e+iωτ )insert (e


A( )  
+∞
 ω −τ) R(1) ( ) f (t − τ)δ ω ∫−∞ 

dt  
∞ 

d τ e
i t  τ∫−∞ 

(


setting t′ = t − τ dt′ = dt


+∞ i t′ 1 τ i tω ωt′ ∫0 
d τ R( ) ( ) e= ∫−∞ 

dt′ e f ( )  
∞ 

���	��
 ���	��
 
� ω ( )f ( )  χ ω  

susceptibility 
Fourier-Laplace transform 

F.T. 

�A( )  ( )  ( )  spectral response δ ω  = χ  ω  f ω 

A convolution of the force and response in time leads to the product of the force and response in 

frequency. This is a manifestation of the convolution theorem: 

−1 � �A  t  ( ) ≡ ∫−∞ 
dτ A  t  − τ) B (τ  =  

∞ 
dτ A(τ) B t  − τ  =  F A(ω) B (ω)( ) ⊗ B t  

∞
( ) ∫−∞ 

( )   

where A( )= F A  t  ) and F ["]  is a Fourier transform. � ω  (  

( ) τNote that R 1 ( )  is real, since the response of a system is an observable.   

( )  is complex.  We will relate CAA (τ) to R(1)(τ ) and σabs ( )The susceptibility χ ω ω  to χ(ω) . 
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( ) = χ  ω + χ  ω  χ ω  ′( ) i ′′( )  

τ 1 τ iωτχ ω  ∫0 
d R( ) ( ) e( ) = 

∞ 

∞ 
τ 1 τ ∫0

1 τ= ∫0 
d R( ) ( )cos  ωτ +  

∞
d τ R( ) ( ) sin  ωτ 

χ′:  even in frequency χ′′:  odd in frequency 

1χ ω  1 τ ′′( ) = Im F (R( ) ( )) ′( ) = Re F (R( ) ( ))  χ ω  τ   


χ ω χ −ω


0 

ω 

′χ 
′′χ 

′( ) = ′( ) 


χ ′ ω χ −ω
′ ( ) = − ′ ′( )  ∴ χ(−ω) = χ *(ω ) 

Notice also χ ω 2 ′( ) = 1 [χ(ω )+ χ(−ω )] 

χ ′ ω 2i ′ ( ) = 1 [χ(ω)− χ(−ω )] 
*χ (ω ) 

KRAMERS-KRÖNIG RELATIONS 

A consequence of causality is that χ ′(ω ) is not independent of χ ′′(ω) : 

′′( ) dω′
+∞ χ ω′

χ ω  
π ′ 

′( ) = 
1 P∫-∞ ω − ω  

′ ′+∞ χ ω
χ ω  

( ) dω′ 
π ′ 

′′( ) = 
1 P∫−∞ ω − ω  



1 
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These are obtained from 

χ ω  = ∫0 
R( ) ( )′( )  

∞ 1 t cos  ωt  dt  

and 
1 +∞ 

′′( ) sin  ωt  dt  t  χ  ω  R( ) ( ) =
π ∫−∞ 

Substituting: 

+∞
χ ω  =  ∫0 

′′( ) sin ω′t d ω′′( )  1 ∞
dt cos ωt χ  ω′∫−∞π 

1 +∞
lim dω χ  ω′ ∫0 

cos ωt sin ω′t dt = 
π R→∞ ∫−∞ 

′ ′′( )  
R 

using cos ax sin bx = 1 sin (a + b) x + 1 sin b − a ) x2 (2 

′ ′1 +∞ 
′ ′′( ) 2 




−cos (ω + ω) R +1 cos (ω − ω) R +11 

π 
= lim P∫−∞ 

dω χ  ω
 ω + ω

− 
′ R→∞ ′ ω − ω  

If we choose R → ∞ , the cosine terms vanish since they oscillate rapidly.  This is equivalent to 

averaging over a monochromatic field.  If we instead average over a single cycle:  

2 ′R = π / (ω − ω) , we obtain 

′′( )′( )  1 +∞ χ ω′
χ ω  =  P∫−∞ 

dω′ 
′π  ω − ω  

The other relation can be derived the same way.  
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Example: Classical Response 

Model absorption of radiation by dipoles with a forced damped harmonic oscillator:   
2�� + γ  + ω  0 x = F ( )x x� t


t 0
For an E.M. wave: F t  0( ) = F  cos  ω  =  
qE cos  ωt 
m 

1x t  0
1 cos  (ω  + δ)t( ) =

qE 
2m 2 2 2 2(ω − ω ) + γ ω  2  

0  


2γ ω 
sin δ =  1
22 2 2 2(ω − ω ) + γ ω  2  

0   

∫0

1( ) = 
∞

d τ R( ) ( ) f (t − τ)An impulsive driving force gives the response function:   x t  τ 

( ) t( ) = F0δ(t − t0 ), then x tif F t ( )= F0 R 1 ( ): 

1 τ =   γ  2R( ) ( )  1 exp   −  τ sin  Ωτ  Ω =  ω  − γ  2 4 
mΩ  2  

0 

1
χ ω  =  

2 2 i
( )  

m (ω − ω −  γω)0 

2γω
χ ω  =  ′′( )  

2 2 2 2m (ω − ω ) + γ ω  2  
0   

1 

γ 

for γ << ω  0 χ  ω  ≈  
i

( )  
2m 

1 
ω ω − ω  +  γ  / 20 0 

1 m
χ =  2 2 iω − ω  +  γω  for ω ≈ ω  00 

2 2ω − ω  =  ω+ ω  0 ) (ω − ω  ≈  ω  ω − ω  ≈  ω  ω − ω  0 )0 ( 0 ) 2 0 ( 0 ) 2 ( 

ωω0 1 1 1
χ ≈  =  

2mω ω  − ω  +  γω  2mω0 (ω − ω  +  
iγ

0 ( ) i 
0 )0 

2 
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Nonlinear Response Functions 

If the system does not respond in a manner linearly proportional to the applied force, we can 

include nonlinear terms:  the higher expansion orders in A t( ) . Let’s look at second order: 

( )
(2) 

dt 1 dt 2 R( ) (t;t ,t 2 ) f1 (t1 ) f2 (t2 )δA t = ∫ ∫  
2 

1 

Again we are integrating over the entire history of the application of two forces f1 and f2, 

including any quadratic dependence on f . 

apply f1 apply f2 observe 

t1 t2 t time 

In this case, we will enforce causality through a time ordering that requires (1) that all forces 

must be applied before a response is observed and (2) that the application of f2 must follow f1: 

≥ ≥ t1 or R(2) (t;t ,t ) ⇒ R(2) ⋅Θ  −  t2 ) ⋅Θ(t − t1 )t t2 (t1 2  2  

t t2 2( )
(2)

δA t = ∫−∞ 
dt2 ∫−∞ 

dt R ( ) (t;t ,t 2 ) f1 (t1 ) f2 (t2 )1 1 

Now we will call the system stationary so that we are only concerned with the time intervals 

between interactions.   

t t2( )
(2) 2δA t = ∫−∞ 

dt2 ∫−∞ 
dt R ( ) (t − t ,t − t1 ) f1 (t1 ) f2 (t2 )1 2 2 

If we define the intervals between adjacent interactions 

τ1 = t2 − t1 τ 2 = t − t2 τ1 τ2 

t1 t2 t 
= ∫0 

∞

∫0 

∞ 2dτ1 dτ2 R( ) (τ  τ  2 ) f1 (t − τ  − τ  2 ) f2 (t − τ  2 )1 , 1 


