QUANTUM DYNAMICS ${ }^{1}$

The motion of a particle is described by a complex wavefunction $|\psi(\overline{\mathrm{r}}, \mathrm{t})\rangle$ that gives the probability amplitude of finding a particle at point \bar{r} at time t. If we know $\left|\psi\left(\bar{r}, t_{0}\right)\right\rangle$, how does it change with time?

$$
\left|\psi\left(\bar{r}, t_{0}\right)\right\rangle \stackrel{?}{\rightarrow}|\psi(\bar{r}, t)\rangle \quad t>t_{0}
$$

We will use our intuition here (largely based on correspondence to classical mechanics)
We start by assuming causality: $\left|\psi\left(t_{0}\right)\right\rangle$ precedes and determines $|\psi(t)\rangle$.
Also assume time is a continuous parameter:

$$
\lim _{t \rightarrow t_{0}}|\psi(t)\rangle=\left|\psi\left(t_{0}\right)\right\rangle
$$

Define an operator that gives time-evolution of system.

$$
|\psi(t)\rangle=U\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle
$$

This "time-displacement operator" is similar to the "space-diplacement operator"

$$
|\psi(\mathrm{r})\rangle=\mathrm{e}^{\mathrm{ik}\left(\mathrm{r}-\mathrm{r}_{0}\right)}\left|\psi\left(\mathrm{r}_{0}\right)\right\rangle
$$

which moves a wavefunction in space.
U does not depend on $|\psi\rangle$. It is a linear operator.

$$
\text { if } \begin{aligned}
&\left|\psi\left(\mathrm{t}_{0}\right)\right\rangle=\mathrm{a}_{1}\left|\varphi_{1}\left(\mathrm{t}_{0}\right)\right\rangle+\mathrm{a}_{2}\left|\varphi\left(\mathrm{t}_{0}\right)\right\rangle \\
& \qquad \begin{aligned}
|\psi(\mathrm{t})\rangle & =\mathrm{U}\left(\mathrm{t}, \mathrm{t}_{0}\right)\left|\psi\left(\mathrm{t}_{0}\right)\right\rangle \\
& =\mathrm{a}_{1} \mathrm{U}\left(\mathrm{t}, \mathrm{t}_{0}\right)\left|\varphi_{1}\left(\mathrm{t}_{0}\right)\right\rangle+\mathrm{a}_{2} \mathrm{U}\left(\mathrm{t}, \mathrm{t}_{0}\right)\left|\varphi_{2}\left(\mathrm{t}_{0}\right)\right\rangle \\
& =\mathrm{a}_{1}(\mathrm{t})\left|\varphi_{1}\right\rangle+\mathrm{a}_{2}(\mathrm{t})\left|\varphi_{2}\right\rangle
\end{aligned}
\end{aligned}
$$

while $\left|a_{i}(t)\right|$ typically not equal to $\left|a_{i}(0)\right|$,

$$
\sum_{n}\left|a_{n}(t)\right|=\sum_{n} \mid a_{n}\left(t_{0}\right\rangle
$$

Properties of $\mathbf{U}\left(\mathbf{t}, \mathbf{t}_{0}\right)$

Time continuity: $U(t, t)=1$
Composition property: $\quad U\left(t_{2}, t_{0}\right)=U\left(t_{2}, t_{1}\right) U\left(t_{1}, t_{0}\right) \quad$ (This should suggest an exponential form).

Note: Order matters!

$$
\begin{aligned}
\left|\psi\left(t_{2}\right)\right\rangle & \left.\left.=U\left(t_{2}, t_{1}\right) U\left(t_{1}, t_{0}\right)\right\rangle \psi\left(t_{0}\right)\right\rangle \\
& =U\left(t_{2}, t_{1}\right)\left|\psi\left(t_{1}\right)\right\rangle
\end{aligned}
$$

$\therefore U\left(t, t_{0}\right) U\left(t_{0}, t\right)=1$
$\therefore \mathrm{U}^{-1}\left(\mathrm{t}, \mathrm{t}_{0}\right)=\mathrm{U}\left(\mathrm{t}_{0}, \mathrm{t}\right) \quad$ inverse is time-reversal

Let's write the time-evolution for an infinitesimal time-step, $\delta \mathrm{t}$.

$$
\lim _{\delta t \rightarrow 0} U\left(t_{0}+\delta t, t_{\mathbf{0}}\right)=\mathbf{1}
$$

We expect that for small $\delta \mathrm{t}$, the difference between $U\left(t_{0}, t_{0}\right)$ and $\mathrm{U}\left(\mathrm{t}_{\mathbf{0}}+\delta \mathrm{t}, \mathrm{t}_{\mathbf{0}}\right)$ will be linear in $\delta \mathrm{t}$. (Think of this as an expansion for small t):

$$
\mathrm{U}\left(\mathrm{t}_{\mathbf{0}}+\delta \mathrm{t}, \mathrm{t}_{\mathbf{0}}\right)=\mathrm{U}\left(\mathrm{t}_{\mathbf{0} \mathbf{0}}, \mathrm{t}_{\mathbf{0}}\right)-\mathrm{i} \Omega \delta \mathrm{t}
$$

Ω is a time-dependent Hermetian operator. We'll see later why the expansion must be complex.

Also, $\mathrm{U}\left(\mathrm{t}_{\mathbf{0}}+\delta \mathrm{t}, \mathrm{t}_{\mathbf{0}}\right)$ is unitary. We know that $\mathrm{U}^{-1} \mathrm{U}=1$ and also

$$
\mathrm{U}^{\dagger}\left(\mathrm{t}_{\mathbf{0}}+\delta \mathrm{t}, \mathrm{t}_{\mathbf{0}}\right) \mathrm{U}\left(\mathrm{t}_{\mathbf{0}}+\delta \mathrm{t}, \mathrm{t}_{\mathbf{0}}\right)=\left(\mathbf{1}+\mathrm{i} \Omega^{\dagger} \delta \mathrm{t}\right)(\mathbf{1}-\mathrm{i} \Omega \delta \mathrm{t}) \approx \mathbf{1}
$$

We know that $U\left(t+\delta t, t_{\mathbf{0}}\right)=U(t+\delta t, t) U\left(t, t_{\mathbf{0}}\right)$.

Knowing the change of U during the period δ tallows us to write a differential equation for the time-development of $U\left(t, t_{0}\right)$. Equation of motion for U :

$$
\begin{aligned}
\frac{\mathrm{dU}\left(\mathrm{t}, \mathrm{t}_{0}\right)}{\mathrm{dt}} & =\lim _{\delta \mathrm{t} \rightarrow 0} \frac{\mathrm{U}\left(\mathrm{t}+\delta \mathrm{t}, \mathrm{t}_{0}\right)-\mathrm{U}\left(\mathrm{t}, \mathrm{t}_{0}\right)}{\delta \mathrm{t}} \\
& =\lim _{\delta \mathrm{t} \rightarrow 0} \frac{[\mathrm{U}(\mathrm{t}+\delta \mathrm{t}, \mathrm{t})-1] \mathrm{U}\left(\mathrm{t}, \mathrm{t}_{0}\right)}{\delta \mathrm{t}}
\end{aligned}
$$

The definition of our infinitesimal time step operator says that $\mathrm{U}(\mathrm{t}+\delta \mathrm{t}, \mathrm{t})=\mathrm{U}(\mathrm{t}, \mathrm{t})-\mathrm{i} \Omega \delta \mathrm{t}=1-\mathrm{i} \Omega \delta \mathrm{t}$. So we have:

$$
\frac{\partial U\left(t, t_{0}\right)}{\partial t}=-i \Omega U\left(t, t_{0}\right)
$$

You can now see that the operator needed a complex argument, because otherwise probability amplitude would not be conserved (it would rise or decay). Rather it oscillates through different states of the system.

Here Ω has units of frequency. Noting (1) quantum mechanics says $E=\hbar \omega$ and (2) in classical mechanics Hamiltonian generates time-evolution, we write

$$
\begin{aligned}
\Omega & =\frac{H}{\hbar} \quad \Omega \text { can be a function of time! } \\
\mathrm{i} \hbar \frac{\partial}{\partial \mathrm{t}} U\left(\mathrm{t}, t_{0}\right) & =H U\left(t, t_{0}\right) \quad \text { eqn. of motion for } U
\end{aligned}
$$

Multiplying from right by $\left|\psi\left(t_{0}\right)\right\rangle$ gives

$$
i \hbar \frac{\partial}{\partial t}|\psi\rangle=H|\psi\rangle
$$

We are also interested in the equation of motion for U^{\dagger}. Following the same approach and recognizing that $U^{\dagger}\left(t, t_{0}\right)$ acts to the left:

$$
\langle\psi(\mathrm{t})|=\left\langle\psi\left(\mathrm{t}_{0}\right)\right| \mathrm{U}^{\dagger}\left(\mathrm{t}, \mathrm{t}_{0}\right)
$$

we get

$$
-\mathrm{i} \hbar \frac{\partial}{\partial \mathrm{t}} \mathrm{U}^{\dagger}\left(\mathrm{t}, \mathrm{t}_{0}\right)=\mathrm{U}^{\dagger}\left(\mathrm{t}, \mathrm{t}_{0}\right) \mathrm{H}
$$

Evaluating U(t, $\left.\mathbf{t}_{0}\right)$: Time-Independent Hamiltonian

Direct integration of $i \hbar \partial U / \partial t=H U$ suggests that U can be expressed as:

$$
U\left(t, t_{0}\right)=\exp \left[-\frac{i}{\hbar} H\left(t-t_{0}\right)\right]
$$

Since H is an operator, we will define this operator through the expansion:

$$
\exp \left[-\frac{\mathrm{iH}}{\hbar}\left(\mathrm{t}-\mathrm{t}_{0}\right)\right]=1+\frac{-\mathrm{iH}}{\hbar}\left(\mathrm{t}-\mathrm{t}_{0}\right)+\left(\frac{-\mathrm{i}}{\hbar}\right)^{2} \frac{\left[\mathrm{H}\left(\mathrm{t}-\mathrm{t}_{0}\right)\right]^{2}}{2}+\ldots
$$

(NOTE: H commutes at all t.)
You can confirm the expansion satisfies the equation of motion for U.

For the time-independent Hamiltonian, we have a set of eigenkets:

$$
\mathrm{H}|\mathrm{n}\rangle=\mathrm{E}_{\mathrm{n}}|\mathrm{n}\rangle \quad \sum_{\mathrm{n}}|\mathrm{n}\rangle\langle\mathrm{n}|=1
$$

So we have

$$
\begin{aligned}
\mathrm{U}\left(\mathrm{t}, \mathrm{t}_{0}\right) & =\sum_{\mathrm{n}} \exp \left[-\mathrm{iH}\left(\mathrm{t}-\mathrm{t}_{0}\right) / \hbar\right]|\mathrm{n}\rangle\langle\mathrm{n}| \\
& =\sum_{\mathrm{n}}|\mathrm{n}\rangle \exp \left[-\mathrm{iE}_{\mathrm{n}}\left(\mathrm{t}-\mathrm{t}_{0}\right) / \hbar\right]\langle\mathrm{n}|
\end{aligned}
$$

So,

$$
\begin{array}{ll}
|\psi(\mathrm{t})\rangle=\mathrm{U}\left(\mathrm{t}, \mathrm{t}_{0}\right)\left|\psi\left(\mathrm{t}_{0}\right)\right\rangle & \\
=\sum_{\mathrm{n}}|\mathrm{n}\rangle \underbrace{\left\langle\mathrm{n} \mid \psi\left(\mathrm{t}_{0}\right)\right\rangle}_{\mathrm{c}_{\mathrm{n}}\left(\mathrm{t}_{0}\right)} \exp \left[\frac{-\mathrm{i}}{\hbar} \mathrm{E}_{\mathrm{n}}\left(\mathrm{t}-\mathrm{t}_{0}\right)\right] & \\
=\sum_{\mathrm{n}}|\mathrm{n}\rangle \mathrm{c}_{\mathrm{n}}(\mathrm{t}) & \mathrm{c}_{\mathrm{n}}(\mathrm{t})=\mathrm{c}_{\mathrm{n}}\left(\mathrm{t}_{0}\right) \exp \left[-\mathrm{i} \omega_{\mathrm{n}}\left(\mathrm{t}-\mathrm{t}_{0}\right)\right]
\end{array}
$$

Expectation values of operators are given by

$$
\begin{aligned}
\langle\mathrm{A}(\mathrm{t})\rangle & =\langle\psi(\mathrm{t})| \mathrm{A}|\psi(\mathrm{t})\rangle \\
& =\langle\psi(0)| \mathrm{U}^{\dagger}(\mathrm{t}, 0) \mathrm{AU}(\mathrm{t}, 0)|\psi(0)\rangle
\end{aligned}
$$

For an initial state $|\psi(0)\rangle=\sum_{n} c_{n}(0)|n\rangle$

$$
\begin{aligned}
\langle A\rangle & =\sum_{n, m} c_{m}^{*}\langle m \mid m\rangle e^{+i \omega_{m} t}\langle m| A|n\rangle e^{-i \omega_{n} t}\langle n \mid n\rangle c_{n} \\
& =\sum_{n, m} c_{m}^{*} c_{n} A_{m n} e^{-\omega_{m m} t} \\
& =\sum_{n, m} c_{m}^{*}(t) c_{n}(t) A_{m n}
\end{aligned}
$$

What is the correlation amplitude for observing the state k at the time t ?

$$
\begin{aligned}
\mathrm{c}_{\mathrm{k}}(\mathrm{t}) & =\langle\mathrm{k} \mid \psi(\mathrm{t})\rangle=\langle\mathrm{k}| \mathrm{U}\left(\mathrm{t}, \mathrm{t}_{0}\right)\left|\psi\left(\mathrm{t}_{0}\right)\right\rangle \\
& =\sum_{\mathrm{n}}\langle\mathrm{k} \mid \mathrm{n}\rangle\left\langle\mathrm{n} \mid \psi\left(\mathrm{t}_{0}\right)\right\rangle \mathrm{e}^{-\mathrm{i} \omega_{\mathrm{n}}\left(\mathrm{t}-\mathrm{t}_{0}\right)}
\end{aligned}
$$

Evaluating the time-evolution operator: Time-Dependent Hamiltonian

If H is a function of time, then the formal integration of $i \hbar \partial U / \partial t=H U$ gives

$$
\mathrm{U}\left(\mathrm{t}, \mathrm{t}_{0}\right)=\exp \left[\frac{-\mathrm{i}}{\hbar} \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{H}\left(\mathrm{t}^{\prime}\right) \mathrm{dt}^{\prime}\right]
$$

Again, we can expand the exponential in a series, and substitute into the eqn. of motion to confirm it; however, we are treating H as a number.

$$
U\left(t, t_{0}\right)=1-\frac{i}{\hbar} \int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}+\frac{1}{2!}\left(\frac{-i}{\hbar}\right)^{2} \int_{t_{0}}^{t} d t^{\prime \prime} H\left(t^{\prime}\right) H\left(t^{\prime \prime}\right)+\ldots
$$

NOTE: This assumes that the Hamiltonians at different times commute! $\left[\mathrm{H}\left(\mathrm{t}^{\prime}\right), \mathrm{H}\left(\mathrm{t}^{\prime \prime}\right)\right]=0$ This is generally not the case in optical + mag. res. spectroscopy. It is only the case for special Hamiltonians with a high degree of symmetry, in which the eigenstates have the same symmetry at all times. For instance the case of a degenerate system (for instance spin $1 / 2$ system) with a time-dependent coupling.

Special Case: If the Hamiltonian does commute at all times, then we can evaluate the timeevolution operator in the exponential form or the expansion.

$$
\mathrm{U}\left(\mathrm{t}, \mathrm{t}_{0}\right)=1-\frac{\mathrm{i}}{\hbar} \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{H}\left(\mathrm{t}^{\prime}\right) \mathrm{dt}^{\prime}+\frac{1}{2!}\left(\frac{-\mathrm{i}}{\hbar}\right)^{2} \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{dt}^{\prime} \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{dt} \mathrm{t}^{\prime \prime} \mathrm{H}\left(\mathrm{t}^{\prime}\right) \mathrm{H}\left(\mathrm{t}^{\prime \prime}\right)+\ldots
$$

If we also know the time-dependent eigenvalues from diagonalizing the time-dependent Hamiltonian (i.e., a degenerate two-level system problem), then:

$$
\mathrm{U}\left(\mathrm{t},{ }_{0}\right)=\sum_{\mathrm{j}}|\mathrm{j}\rangle \exp \left[\frac{-\mathrm{i}}{\hbar} \int_{\mathrm{t}_{0}}^{\mathrm{t}} \varepsilon_{\mathrm{j}}\left(\mathrm{t}^{\prime}\right) \mathrm{d} \mathrm{t}^{\prime}\right]\langle\mathrm{j}|
$$

More generally: We assume the Hamiltonian at different times do not commute. Let's proceed a bit more carefuly:

Integrate

$$
\frac{\partial}{\partial \mathrm{t}} \mathrm{U}\left(\mathrm{t},{ }_{0}\right)=\frac{-\mathrm{i}}{\hbar} \mathrm{H}(\mathrm{t}) \mathrm{U}\left(\mathrm{t},{ }_{0}\right)
$$

To give:

$$
\mathrm{U}\left(\mathrm{t}, \mathrm{t}_{0}\right)=1-\frac{\mathrm{i}}{\hbar} \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{~d} \tau \mathrm{H}(\tau) \mathrm{U}\left(\tau,{ }_{0}\right)
$$

This is the solution; however, $U\left(t, t_{0}\right)$ is a function of itself. We can solve by iteratively substituting U into itself.
First Step:

$$
\begin{aligned}
\mathrm{U}\left(\mathrm{t}, \mathrm{t}_{0}\right) & =1-\frac{\mathrm{i}}{\hbar} \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{~d} \tau \mathrm{H}(\tau)\left[1-\frac{\mathrm{i}}{\hbar} \int_{\mathrm{t}_{0}}^{\tau} \mathrm{d} \tau^{\prime} \mathrm{H}\left(\tau^{\prime}\right) \mathrm{U}\left(\tau^{\prime},{ }_{0}\right)\right] \\
& =1+\left(\frac{-\mathrm{i}}{\hbar}\right) \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{~d} \tau \mathrm{H}(\tau)\left(\frac{-\mathrm{i}}{\hbar}\right)^{2} \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{~d} \tau \int_{\mathrm{t}_{0}}^{\tau} \mathrm{d} \tau^{\prime} \mathrm{H}(\tau) \mathrm{H}\left(\tau^{\prime}\right) \mathrm{U}\left(\tau^{\prime},{ }_{0}\right)
\end{aligned}
$$

Next Step:

$$
\begin{aligned}
\mathrm{U}\left(\mathrm{t}, \mathrm{t}_{0}\right)= & 1+\left(\frac{-\mathrm{i}}{\hbar}\right) \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{~d} \tau \mathrm{H}(\tau) \\
& +\left(\frac{-\mathrm{i}}{\hbar}\right)^{2} \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{~d} \tau \int_{\mathrm{t}_{0}}^{\tau} \mathrm{d} \tau^{\prime} \mathrm{H}(\tau) \mathrm{H}\left(\tau^{\prime}\right) \\
& +\left(\frac{-\mathrm{i}}{\hbar}\right)^{3} \int_{\mathrm{t}_{0}}^{t} \mathrm{~d} \tau \int_{\mathrm{t}_{0}}^{\tau} \mathrm{d} \tau^{\prime} \int_{\mathrm{t}_{0}}^{\tau^{\prime}} \mathrm{d} \tau^{\prime \prime} \mathrm{H}(\tau) \mathrm{H}\left(\tau^{\prime}\right) \mathrm{H}\left(\tau^{\prime \prime}\right) \mathrm{U}\left(\tau^{\prime \prime}, \mathrm{t}_{0}\right)
\end{aligned}
$$

From this expansion, you should be aware that there is a time-ordering to the interactions. For the third term, $\tau^{\prime \prime}$ acts before τ^{\prime}, which acts before τ : $t_{0} \leq \tau^{\prime \prime} \leq \tau^{\prime} \leq \tau \leq t$.

Notice also that the operators act to the right.

This is known as the (positive) time-ordered exponential.

$$
\begin{aligned}
& U\left(t, t_{0}\right) \equiv \exp _{+}\left[\frac{-i}{\hbar} \int_{t_{0}}^{t} d \tau H(\tau)\right]=\hat{T} \exp \left[\frac{-i}{\hbar} \int_{t_{0}}^{t} d \tau H(\tau)\right] \\
& =1+\sum_{\mathrm{n}=1}^{\infty}\left(\frac{-i}{\hbar}\right)^{n} \int_{t_{0}}^{t} d \tau_{\mathrm{n}} \int_{t_{0}}^{\tau} d \tau_{\mathrm{n}} \ldots \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{~d} \tau_{1} \quad H\left(\tau_{\mathrm{n}}\right) \mathrm{H}\left(\tau_{\mathrm{n}-1}\right) \ldots \mathrm{H}\left(\tau_{1}\right)
\end{aligned}
$$

Here the time-ordering is:

$$
\begin{aligned}
& t_{0} \rightarrow \tau_{1} \rightarrow \tau_{2} \rightarrow \tau_{3} \ldots . \tau_{n} \rightarrow t \\
& t_{0} \rightarrow \quad \ldots \quad \tau^{\prime \prime} \rightarrow \tau^{\prime} \rightarrow \tau
\end{aligned}
$$

Compare this with the expansion of an exponential:

$$
1+\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}!}\left(\frac{-\mathrm{i}}{\hbar}\right)^{\mathrm{n}} \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{~d} \tau_{\mathrm{n}} \ldots \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{~d} \tau_{1} \mathrm{H}\left(\tau_{\mathrm{n}}\right) \mathrm{H}\left(\tau_{\mathrm{n}-1}\right) \ldots \mathrm{H}\left(\tau_{1}\right)
$$

Here the time-variables assume all values, and therefore all orderings for $H\left(\tau_{i}\right)$ are calculated. The areas are normalized by the n ! factor. (There are n ! time-orderings of the τ_{n} times.)

We are also interested in the Hermetian conjugate of $U\left(t, t_{0}\right)$, which has the equation of motion

$$
\frac{\partial}{\partial \mathrm{t}} \mathrm{U}^{\dagger}\left(\mathrm{t}, \mathrm{t}_{0}\right)=\frac{+\mathrm{i}}{\hbar} \mathrm{U}^{\dagger}\left(\mathrm{t}, \mathrm{t}_{0}\right) \mathrm{H}(\mathrm{t})
$$

If we repeat the method above, remembering that $U^{\dagger}\left(t, t_{0}\right)$ acts to the left:

$$
\langle\psi(\mathrm{t})|=\left\langle\psi\left(\mathrm{t}_{0}\right)\right| \mathrm{U}^{\dagger}\left(\mathrm{t}, \mathrm{t}_{0}\right)
$$

then from $\mathrm{U}^{\dagger}\left(\mathrm{t}, \mathrm{t}_{0}\right)=\mathrm{U}^{\dagger}\left(\mathrm{t}_{0}, \mathrm{t}_{0}\right)+\frac{\mathrm{i}}{\hbar} \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{d} \tau \mathrm{U}^{\dagger}(\mathrm{t}, \tau) \mathrm{H}(\tau)$ we obtain a negative-time-ordered exponential:

$$
\begin{aligned}
U^{\dagger}\left(t, t_{0}\right) & =\exp _{-}\left[\frac{i}{\hbar} \int_{t_{0}}^{t} d \tau H(\tau)\right] \\
& =1+\sum_{\mathrm{n}=1}^{\infty}\left(\frac{i}{\hbar}\right)^{n} \int_{t_{0}}^{t} d \tau_{\mathrm{n}} \int_{\mathrm{t}_{0}}^{\tau_{\mathrm{n}}} d \tau_{\mathrm{n}-1} \ldots \int_{\mathrm{t}_{0}}^{\tau_{2}} \mathrm{~d} \tau_{1} H\left(\tau_{1}\right) H\left(\tau_{2}\right) \ldots H\left(\tau_{\mathrm{n}}\right)
\end{aligned}
$$

Here the $H\left(\tau_{i}\right)$ act to the left.

