16 – 1

Normal ↔ Local Modes:

Classical, Morse, Minimal Model

Reading: Chapter 9.4.12, *The Spectra and Dynamics of Diatomic Molecules*, H. Lefebvre-Brion and R. Field, 2nd Ed., Academic Press, 2004.

Last time:

 $|\Psi(0)\rangle = |A\rangle$

 $\rho(t)$ in (A,B) and (+,-) representations

$$\mathbf{H} = \mathbf{H}^{\text{diag}} + \mathbf{H}^{\text{res}}$$

$$E_{\text{diag}}(t) = \langle \mathbf{H}^{\text{diag}} \rangle$$

$$E_{\text{res}}(t) = \langle \mathbf{H}^{\text{res}} \rangle = \sum_{\mathbf{\kappa}} \langle \mathbf{\Omega}_{k} + \mathbf{\Omega}_{k}^{\dagger} \rangle$$

$$\overline{E} = E_{\text{diag}}(t) + E_{\text{res}}(t)$$

$$\overline{E}_{\text{res},j} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} dt \left(\mathbf{\Omega}_{j} + \mathbf{\Omega}_{j}^{\dagger} \right)$$

$$f_{j} = \left| \frac{\overline{E}_{\text{res},j}}{\overline{E}_{\text{res}}} \right|$$

<u>Today</u>: Preparation for exam Correction of misconceptions from Lecture #15 Overtone Spectroscopy Classical treatment of 2 coupled harmonic oscillations

Consider excitation of a molecule, like H₂O, with two short pulses of radiation. The two pulses have different center frequencies and the second pulse can be delayed by τ relative to the first pulse, for $0 \le \tau \le 10ps$. After the two pulses have exited the sample, populations in the two-step excited eigenstates are measured by an unspecified method. The measured quantity is $\rho_{ij}(\tau)$ for each of the eigenstates in the two-step excited polyad (see figure) on page 16-3.

At t = 0 prepare $|\Psi(0)\rangle = |A\rangle$

** Only μ_{aA} and μ_{bB} (basis state to basis state) transition moments are non-zero.

The population in each of the two-step excited eigenstates, $\rho_{ff}(\tau)$, as a function of delay between the two pulses is

$$\rho_{ff}(\tau) = \left\langle f \left| \delta \boldsymbol{\mu} \right| \Psi(\tau) \right\rangle \left\langle \Psi(\tau) \right| \delta \boldsymbol{\mu} \left| f \right\rangle$$

transform from eigen-basis to zero-order basis state

$$=\sum_{\mathbf{k},\mathbf{m}} \langle f | k^{(0)} \rangle \langle k^{(0)} | \delta \mathbf{\mu}^{\dagger} \rho(\tau) \mathbf{\mu} | m^{(0)} \rangle \langle m^{(0)} | f \rangle$$

$$|k^{(0)}\rangle$$
, $|m^{(0)}\rangle$ are zero-order basis states
= $\sum_{k,m} \mathbf{T}_{fk} \Big(\delta \boldsymbol{\mu}^{\dagger} \boldsymbol{\rho}(\tau) \boldsymbol{\mu} \Big)_{km} \mathbf{T}_{mf}^{\dagger}$

where ${\bf T}$ is the transformation that diagonalizes the (abcd) polyad.

$$\mathbf{T}^{\dagger} \mathbf{H}(abcd) \mathbf{T} = \begin{pmatrix} E_1 & 0 & 0 & 0 \\ 0 & E_2 & 0 & 0 \\ 0 & 0 & E_3 & 0 \\ 0 & 0 & 0 & E_4 \end{pmatrix}$$

At t = 0 prepare $|\psi(0)\rangle = |A\rangle$ with a short pulse.

After a delay, τ , a second pulse excites to a higher energy polyad.

Want $\rho(\tau)$ in the A,B basis set and $\delta \mu$ in the {abcd}, {AB} basis set

There are 4 nonzero terms in the sum for $\rho_{ff}(\tau)$

$$\begin{split} \mathbf{T}_{fa} \delta \mu_{aA}^{\dagger} \rho_{AA}(\tau) \delta \mu_{aA} \mathbf{T}_{af}^{\dagger} &\to \left| \mathbf{T}_{fa} \right|^{2} \left| \delta \mu_{aA} \right|^{2} \rho_{AA}(\tau) \\ &+ \mathbf{T}_{fb} \delta \mu_{bB}^{\dagger} \rho_{BB}(\tau) \delta \mu_{Bb} \mathbf{T}_{bf}^{\dagger} \to \left| \mathbf{T}_{fb} \right|^{2} \left| \delta \mu_{bB} \right|^{2} \rho_{BB}(\tau) \\ &+ \mathbf{T}_{fa} \delta \mu_{aA}^{\dagger} \rho_{AB}(\tau) \delta \mu_{Bb} \mathbf{T}_{bf}^{\dagger} \\ &+ \mathbf{T}_{fb} \delta \mu_{bB}^{\dagger} \rho_{BA}(\tau) \delta \mu_{Aa} \mathbf{T}_{af}^{\dagger} \end{split} \to 2 \operatorname{Re} \left(\rho_{AB}(\tau) \right) \left(\mathbf{T}_{fa} \mathbf{T}_{bf}^{\dagger} \right) \left(\delta \mu_{Aa} \delta \mu_{bB}^{\dagger} \right) \end{split}$$

Recall from 15 - 5
$$\rho_{AA}(\tau) = 1 - \frac{V^2}{2(V^2 + \delta E^2)} (1 - \cos \omega_{+-} \tau)$$

$$\rho_{BB}(\tau) = \frac{V^2}{2(V^2 + \delta E^2)} (1 - \cos \omega_{+-} \tau) = 1 - \rho_{AA}(\tau)$$

$$\operatorname{Re}(\rho_{AB}(\tau)) = \frac{V \delta E}{2(V^2 + \delta E^2)} (1 - \cos \omega_{+-} \tau)$$

(actually, there is an overall scale factor on $\mathbf{p}(\tau)$ for the A,B states that depends on the strength of the 1st laser pulse).

$$\rho_{ff}(\tau) = \left[\left| \mathbf{T}_{fa} \right|^2 \left| \delta \mu_{aA} \right|^2 - \left| \mathbf{T}_{fb} \right|^2 \left| \delta \mu_{bB} \right|^2 \right] \rho_{AA}(\tau) + \left| \mathbf{T}_{fb} \right|^2 \left| \delta \mu_{bB} \right|^2 + 2 \operatorname{Re} \left(\rho_{AB}(\tau) \right) \left(\mathbf{T}_{fa} \mathbf{T}_{bf}^{\dagger} \right) \left(\delta \mu_{aA} \delta \mu_{Bb}^{\dagger} \right)$$

$$\rho_{ff}(\tau) = \left|\mathbf{T}_{fa}\right|^{2} \left|\delta\mu_{aA}\right|^{2} - \frac{\left(1 - \cos\omega_{+-}\tau\right)}{2\left(V^{2} + \delta E^{2}\right)} \left[V^{2}\left(\left|\mathbf{T}_{fa}\right|^{2} \left|\delta\mu_{aA}\right|^{2} - \left|\mathbf{T}_{fb}\right|^{2} \left|\delta\mu_{Bb}\right|^{2}\right) - V\delta E\left(\mathbf{T}_{fa}\mathbf{T}_{bf}^{\dagger}\right)\left(\delta\mu_{aA}\delta\mu_{Bb}^{\dagger}\right)\right]$$

(good idea to factor out $|\mathbf{T}_{fa}|^2 |\delta \mu_{aA}|^2$ from entire equation).

at
$$\tau = 0$$
 $\rho_{ff}(0) = |\mathbf{T}_{fa}|^2 |\delta \mu_{aA}|^2$

Population is divided among the (1234) eigenstate components of the (bacd) polyad according to the fractional $|a\rangle$ character in each eigenstate. The intensity weighted average *E* is E_a

$$\langle E \rangle = \frac{\sum_{f} \rho_{ff} E_{f}}{\sum_{f} \rho_{ff}} = E_{a}$$

*populations oscillate at ω_{+} , which is an eigenstate spacing in the (AB) polyad

* if we sum over the eigenstate populations in the (abcd) polyad, we get

$$\sum_{f} \rho_{ff}(\tau) = \left|\delta\mu_{aA}\right|^{2} + \frac{(1 - \cos\omega_{+-}\tau)}{2(V^{2} + \delta E^{2})} \left[V^{2} \left(\left|\delta\mu_{aA}\right|^{2} - \left|\delta\mu_{Bb}\right|^{2}\right)\right]$$

because
$$\sum_{f} |\mathbf{T}_{fa}|^{2} = 1$$
$$\sum_{f} \mathbf{T}_{fa} \mathbf{T}_{bf}^{\dagger} = \sum_{f} \mathbf{T}_{bf}^{\dagger} \mathbf{T}_{fa} = \mathbb{1}_{ba} = 0$$

When $|V| \gg \delta E$, get oscillation between $\sum_{f} \rho_{ff} = |\delta\mu_{aA}|^{2}$ and $2|\delta\mu_{aA}|^{2} - |\delta\mu_{bB}|^{2}$.

Populations in (1234) are modulated by coherences in (A,B) polyad weighted by difference in *a*–A and *b*–B transition probabilities. These transition probabilities often have simple quantum number interrelationships. In this simple (A,B) case, all populations are modulated at the same frequency, ω_{+} , but with different amplitudes. More complicated when there are more than 2 states in the intermediate polyad.

So we sample dynamics in (AB) polyad through τ -dependent populations in (abcd) polyad. We do not sample dynamics in (abcd) polyad.

Multi-step dynamics in frequency domain? See next example.

Overtone Spectroscopy in Larger Molecules

Expect increasing width as you go to higher overtone. Intensity decreases by factor of 10 to 100 per overtone. Spacings are $\sim \omega$. (See K. K. Lehmann, J. Chem. Phys. **93**, 6140 (1990).)

Double resonance Based on change in anharmonicity of RH stretch $G(v) = \omega(v+1/2) + x(v+1/2)^2$ $\Delta G(v+1/2) = G(v+1) - G(v) = \omega + 2x(v+1)$ (x < 0)

5 R-H (first laser) + 1 R-H (second laser)

What do we see in the R–H fundamental region (actually 5R-H + 1R-H)?

- * extent of mixing of 5 R–H into bath. For each quantum of R–H transferred into the bath, the density of dark states increases but the coupling matrix elements decrease (sequential vs. direct coupling mechanism?).
- * intensity (area) of each anharmonically split out clump tells fractionation into lower # of quanta of RH and width tells rate of transfer $n \rightarrow n-1$.

We see where the 5R–H pluck goes, and how fast. Early steps in the relaxation are typically dependent on a doorway state lying near the bright state. If this near degeneracy does not occur, there is a bottleneck in the energy flow.

What would you observe in an experiment with two short pulses $(5\omega) \tau (1\omega)$ with variable delay?

- * in the absorption spectrum of the second pulse?
- * in the populations produced?