Normal \leftrightarrow Local Modes:
 Classical, Morse, Minimal Model

Reading: \quad Chapter 9.4.12, The Spectra and Dynamics of Diatomic Molecules, H. Lefebvre-Brion and R. Field, $2^{\text {nd }}$ Ed., Academic Press, 2004.

Last time:
two level problem (A,B), (+,-)
$|\Psi(0)\rangle=|\mathrm{A}\rangle$
$\boldsymbol{\rho}(t)$ in (A,B) and (+,-) representations
$\mathbf{H}=\mathbf{H}^{\text {diag }}+\mathbf{H}^{\text {res }}$

$$
E_{\mathrm{diag}}(t)=\left\langle\mathbf{H}^{\text {diag }}\right\rangle
$$

$$
E_{\mathrm{res}}(t)=\left\langle\mathbf{H}^{\mathrm{res}}\right\rangle=\sum_{\mathbf{\kappa}}\left\langle\boldsymbol{\Omega}_{k}+\boldsymbol{\Omega}_{k}^{\dagger}\right\rangle
$$

$$
\bar{E}=E_{\mathrm{diag}}(t)+E_{\mathrm{res}}(t)
$$

$$
\bar{E}_{\mathrm{res}, j}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t\left(\boldsymbol{\Omega}_{j}+\boldsymbol{\Omega}_{j}^{\dagger}\right)
$$

$$
f_{j}=\left|\frac{\bar{E}_{\mathrm{res}, j}}{\bar{E}_{\mathrm{res}}}\right|
$$

Today: Preparation for exam
Correction of misconceptions from Lecture \#15
Overtone Spectroscopy
Classical treatment of 2 coupled harmonic oscillations
Consider excitation of a molecule, like $\mathrm{H}_{2} \mathrm{O}$, with two short pulses of radiation. The two pulses have different center frequencies and the second pulse can be delayed by τ relative to the first pulse, for $0 \leq \tau \leq 10 p s$. After the two pulses have exited the sample, populations in the two-step excited eigenstates are measured by an unspecified method. The measured quantity is $\rho_{f f}(\tau)$ for each of the eigenstates in the two-step excited polyad (see figure) on page 16-3.

At $t=0$ prepare $|\Psi(0)\rangle=|\mathrm{A}\rangle$
** Only μ_{aA} and μ_{bB} (basis state to basis state) transition moments are non-zero.
The population in each of the two-step excited eigenstates, $\rho_{f f}(\tau)$, as a function of delay between the two pulses is

$$
\rho_{f f}(\tau)=\langle f| \delta \boldsymbol{\mu} \mid \Psi \overbrace{\Psi(\tau)\rangle\langle\Psi(\tau)| \delta \boldsymbol{\mu}|f\rangle}^{\rho(\tau)}
$$

transform from eigen-basis to zero-order basis state

$$
=\sum_{\mathrm{k}, \mathrm{~m}}\left\langle f \mid k^{(0)}\right\rangle\left\langle k^{(0)}\right| \delta \boldsymbol{\mu}^{\dagger} \rho(\tau) \boldsymbol{\mu}\left|m^{(0)}\right\rangle\left\langle m^{(0)} \mid f\right\rangle
$$

$\left|k^{(0)}\right\rangle,\left|m^{(0)}\right\rangle$ are zero-order basis states

$$
=\sum_{k, m} T_{k}\left(\delta u^{\prime} \rho(\tau) \mu\right)_{k n^{\prime}}
$$

where \mathbf{T} is the transformation that diagonalizes the (abcd) polyad.

$$
\mathbf{T}^{\dagger} \mathbf{H}(a b c d) \mathbf{T}=\left(\begin{array}{cccc}
E_{1} & 0 & 0 & 0 \\
0 & E_{2} & 0 & 0 \\
0 & 0 & E_{3} & 0 \\
0 & 0 & 0 & E_{4}
\end{array}\right)
$$

At $t=0$ prepare $|\psi(0)\rangle=|\mathrm{A}\rangle$ with a short pulse.
After a delay, τ, a second pulse excites to a higher energy polyad.

Want $\rho(\tau)$ in the A, B basis set and $\delta \mu$ in the $\{\operatorname{abcd}\},\{\mathrm{AB}\}$ basis set

There are 4 nonzero terms in the sum for $\rho_{f f}(\tau)$

$$
\left.\begin{array}{rl}
& \mathbf{T}_{f a} \delta \mu_{a A}^{\dagger} \rho_{A A}(\tau) \delta \mu_{a A} \mathbf{T}_{a f}^{\dagger}
\end{array} \rightarrow\left|\mathbf{T}_{f a}\right|^{2}\left|\delta \mu_{a A}\right|^{2} \rho_{A A}(\tau) ~ 子 \begin{array}{l}
+\mathbf{T}_{f b} \delta \mu_{b B}^{\dagger} \rho_{B B}(\tau) \delta \mu_{B b} \mathbf{T}_{b f}^{\dagger} \rightarrow\left|\mathbf{T}_{f b}\right|^{2}\left|\delta \mu_{b B}\right|^{2} \rho_{B B}(\tau) \\
+ \\
+\mathbf{T}_{f a} \delta \mu_{a A}^{\dagger} \rho_{A B}(\tau) \delta \mu_{B b} \mathbf{T}_{b f}^{\dagger} \\
+ \\
+\mathbf{T}_{f b} \delta \mu_{b B}^{\dagger} \rho_{B A}(\tau) \delta \mu_{A a} \mathbf{T}_{a f}^{\dagger}
\end{array}\right\} \rightarrow 2 \operatorname{Re}\left(\rho_{A B}(\tau)\right)\left(\mathbf{T}_{f a} \mathbf{T}_{b f}^{\dagger}\right)\left(\delta \mu_{A a} \delta \mu_{b B}^{\dagger}\right)
$$

$$
\text { Recall from 15-5 } \rho_{A A}(\tau)=1-\frac{V^{2}}{2\left(V^{2}+\delta E^{2}\right)}\left(1-\cos \omega_{+-} \tau\right)
$$

$$
\rho_{B B}(\tau)=\frac{V^{2}}{2\left(V^{2}+\delta E^{2}\right)}\left(1-\cos \omega_{+-} \tau\right)=1-\rho_{A A}(\tau)
$$

$$
\operatorname{Re}\left(\rho_{A B}(\tau)\right)=\frac{V \delta E}{2\left(V^{2}+\delta E^{2}\right)}\left(1-\cos \omega_{+-} \tau\right)
$$

(actually, there is an overall scale factor on $\boldsymbol{\rho}(\tau)$ for the A, B states that depends on the strength of the 1 st laser pulse).

$$
\begin{aligned}
& \rho_{f f}(\tau)= {\left[\left|\mathbf{T}_{f a}\right|^{2}\left|\delta \mu_{a A}\right|^{2}-\left|\mathbf{T}_{f b}\right|^{2}\left|\delta \mu_{b B}\right|^{2}\right] \rho_{A A}(\tau) } \\
&+\left|\mathbf{T}_{f b}\right|^{2}\left|\delta \mu_{b B}\right|^{2} \\
&+2 \operatorname{Re}\left(\rho_{A B}(\tau)\right)\left(\mathbf{T}_{f a} \mathbf{T}_{b f}^{\dagger}\right)\left(\delta \mu_{a A} \delta \mu_{B b}^{\dagger}\right) \\
& \rho_{f f}(\tau)=\left|\mathbf{T}_{f a}\right|^{2}\left|\delta \mu_{a A}\right|^{2} \\
&-\frac{\left(1-\cos \omega_{+-} \tau\right)}{2\left(V^{2}+\delta E^{2}\right)}\left[V^{2}\left(\left|\mathbf{T}_{f a}\right|^{2}\left|\delta \mu_{a A}\right|^{2}-\left|\mathbf{T}_{f b}\right|^{2}\left|\delta \mu_{B b}\right|^{2}\right)-V \delta E\left(\mathbf{T}_{f a} \mathbf{T}_{b f}^{\dagger}\right)\left(\delta \mu_{a A} \delta \mu_{B b}^{\dagger}\right)\right]
\end{aligned}
$$

(good idea to factor out $\left|\mathbf{T}_{f a}\right|^{2}\left|\delta \mu_{a A}\right|^{2}$ from entire equation).

Population is divided among the (1234) eigenstate components of the (back) polyad according to the fractional $|a\rangle$ character in each eigenstate. The intensity weighted average E is E_{a}

$$
\langle E\rangle=\frac{\sum_{f} \rho_{f f} E_{f}}{\sum_{f} \rho_{f f}}=E_{a}
$$

*populations oscillate at ω_{++}, which is an eigenstate spacing in the (AB) polyad

* if we sum over the eigenstate populations in the (abcs) polyad, we get

$$
\begin{gathered}
\sum_{f} \rho_{f f}(\tau)=\left|\delta \mu_{a A}\right|^{2}+\frac{\left(1-\cos \omega_{+-} \tau\right)}{2\left(V^{2}+\delta E^{2}\right)}\left[V^{2}\left(\left|\delta \mu_{a A}\right|^{2}-\left|\delta \mu_{B b}\right|^{2}\right)\right] \\
\text { because } \quad \sum_{f}\left|\mathbf{T}_{f a}\right|^{2}=1 \\
\sum_{f} \mathbf{T}_{f a} \mathbf{T}_{b f}^{\dagger}=\sum_{f} \mathbf{T}_{b f}^{\dagger} \mathbf{T}_{f a}=\mathbb{1}_{b a}=0
\end{gathered}
$$

$$
\text { When }|V| \gg \delta E \text {, get oscillation between } \sum_{f} \rho_{f f}=\left|\delta \mu_{a A}\right|^{2} \text { and } 2\left|\delta \mu_{a A}\right|^{2}-\left|\delta \mu_{b B}\right|^{2}
$$

Populations in (1234) are modulated by coherence in (A,B) polyad weighted by difference in $a-A$ and $b-B$ transition probabilities. These transition probabilities often have simple quantum number interrelationships. In this simple (A,B) case, all populations are modulated at the same frequency, ω_{+-}, but with different amplitudes. More complicated when there are more than 2 states in the intermediate polyad.

So we sample dynamics in (AB) polyad through τ-dependent populations in (bcd) polyad. We do not sample dynamics in (bcd) polyad.

Multi-step dynamics in frequency domain? See next example.

Overtone Spectroscopy in Larger Molecules

5R-H

0
simple overtone spectrum:

Expect increasing width as you go to higher overtone. Intensity decreases by factor of 10 to 100 per overtone. Spacings are $\sim \omega$. (See K. K. Lehmann, J. Chem. Phys. 93, 6140 (1990).)

Double resonance
Based on change in anharmonicity of RH stretch

$$
\begin{aligned}
& G(v)=\omega(v+1 / 2)+x(v+1 / 2)^{2} \\
& \Delta G(v+1 / 2)=G(v+1)-G(v)=\omega+2 x(v+1) \quad(x<0)
\end{aligned}
$$

$5 \mathrm{R}-\mathrm{H}$ (first laser) $+1 \mathrm{R}-\mathrm{H}$ (second laser)

What do we see in the $\mathrm{R}-\mathrm{H}$ fundamental region (actually $5 \mathrm{R}-\mathrm{H}+1 \mathrm{R}-\mathrm{H}$)?

* extent of mixing of $5 \mathrm{R}-\mathrm{H}$ into bath. For each quantum of R-H transferred into the bath, the density of dark states increases but the coupling matrix elements decrease (sequential vs. direct coupling mechanism?).
* intensity (area) of each anharmonically split out clump tells fractionation into lower \# of quanta of RH and width tells rate of transfer $n \rightarrow n-1$.

We see where the $5 \mathrm{R}-\mathrm{H}$ pluck goes, and how fast. Early steps in the relaxation are typically dependent on a doorway state lying near the bright state. If this near degeneracy does not occur, there is a bottleneck in the energy flow.

What would you observe in an experiment with two short pulses $(5 \omega) \tau(1 \omega)$ with variable delay?

* in the absorption spectrum of the second pulse?
* in the populations produced?

