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5.74 RWF Lecture #16 16 – 1 

Normal ↔↔↔↔ Local Modes: 

Classical, Morse, Minimal Model 

Reading: Chapter 9.4.12, The Spectra and Dynamics of Diatomic Molecules, H. Lefebvre-Brion and R. 
Field, 2nd Ed., Academic Press, 2004. 

Last time:

two level problem (A,B), (+,–) 

Ψ(0)〉 = A〉 

ρρρρ(t) in (A,B) and (+,–) representations 

H = Hdiag + Hres 

Hdiag( ) =
Ediag t


res
( ) =
t H
 = ∑ ΩΩk + ΩΩk 
†Eres 

κκ

E = Ediag ( ) + E ( )t
t res 

Eres, j = lim 
1 

∫
T 

dt(ΩΩ + ΩΩ† 
j )

T →∞ T 0 j 

Eres, j
f j =


Eres
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Today: Preparation for exam 
Correction of misconceptions from Lecture #15 
Overtone Spectroscopy 
Classical treatment of 2 coupled harmonic oscillations 

Consider excitation of a molecule, like H2O, with two short pulses of radiation. The two pulses have 
different center frequencies and the second pulse can be delayed by τ relative to the first pulse, for 

0 ≤ τ ≤ 10ps. After the two pulses have exited the sample, populations in the two-step excited eigenstates 

are measured by an unspecified method. The measured quantity is ρff(τ) for each of the eigenstates in the 

two-step excited polyad (see figure) on page 16-3. 

At t = 0 prepare Ψ(0)〉 = A〉 

** Only µaA and µbB (basis state to basis state) transition moments are non-zero.


The population in each of the two-step excited eigenstates, ρff(τ), as a function of delay between the two


pulses is 

ρρρρ(τ) 

( ) = Ψ( )  Ψ( )ρ τ  f δµµ τ τ δµµ fff 

transform from eigen-basis to zero-order basis state


0
 k( )  ( )  ( )0 0 0µµ† ( )= ∑
 f k( )  δ ρ τ µµ m m f 
k,m 

k(0)〉 , m(0)〉 are zero-order basis states 

†µ ρ( )= ∑ Tfk (δµ† ρ τ µµ) 
m f0( )  

Tmf 
k m  km , 

where T is the transformation that diagonalizes the (abcd) polyad. 

 E1 0 0 0  
 0 0†T H(abcd)T =  

E2 0 
 

 0 0 E3 0  
  0 0 0 E4  
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BASIS STATES EIGEN-STATES 
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At t = 0 prepare ψ(0)〉  = A〉 with a short pulse.


After a delay, τ, a second pulse excites to a higher energy polyad.




5.74 RWF Lecture #16 16 – 4 

Want ρ(τ) in the A,B basis set and δµµµµ in the {abcd}, {AB} basis set 

There are 4 nonzero terms in the sum for ρff(τ) 

22† τ δ † ( )TfaδµaAρAA ( ) µaATaf → δµ ρAA τTfa aA 

22 ( )+Tfbδµ† 
bBρBB ( ) µBbTbf →τ δ † δµ ρBB τTfb bB 

+Tfaδµ† 
aAρAB ( ) µBbTbf τ δ †  

† † → 2Re(ρ ( ))(T T  )(δµAaδµbB )AB τ fa bfbf
+Tfbδµ† 

bBρBA ( ) µAaTaf τ δ †  

V 2 

Recall from 15 - 5 ρAA ( ) = −  
2(V + δE 2 ) (1− cosω τ)τ 1

2 +− 

V 2 

ρBB ( ) = 
2(V + δE 2 ) (1 − cosω τ) = − ρ ( )τ 

2 +− 1 AA τ 

V E
Re(ρ ( )) = 

2(V 

δ
+ δE 2 ) (1 − cosω τ)AB τ 

2 +− 

(actually, there is an overall scale factor on ρρρρ(τ) for the A,B states that depends on the strength of the 1st 

laser pulse). 

2 22( ) =  2  ( )ρ τ   δµ − δµ ρAA τff Tfa TfbaA bB 
22+ δµTfb bB 

† †+2Re(ρ ( ))(T T  )(δµaAδµBb )AB τ fa bf 

22( ) =ρ τ  δµff Tfa aA 

2 2 2 (1− cosω τ)  2  2− +− † †δµ − δµ  − V E (T T )(δµaAδµBb )Tfa Tfb δ fa bf aA Bb22(V + δE 2 ) V  
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(good idea to factor out Tfa2 δµaA2 from entire equation). 

22( ) =at τ = 0 ρ ff 0 δµTfa aA 

Population is divided among the (1234) eigenstate components of the (bacd) polyad according to the 
fractional a〉 character in each eigenstate. The intensity weighted average E is Ea 

∑ ρ ff E f 
f

E = = Ea∑ ρ ff 
f 

*populations oscillate at ω+–, which is an eigenstate spacing in the (AB) polyad 

* if we sum over the eigenstate populations in the (abcd) polyad, we get 

22 (1− cosω τ) 
V 2 ( 2 + +−( ) = µ∑ ρ τ  δµ − δµ
 )ff δ aA aA Bb 2 

f 2(V + δE 2 ) 
2because ∑ = 1Tfa 

f 

† †∑ T Tbf = ∑ Tbf Tfa = 1ba = 0fa 
f f 

2 2When V >> δE, get oscillation between ∑ = µ  ρ  2 and 2 δµ − δµ .aA bBff δ aA 
f 

Populations in (1234) are modulated by coherences in (A,B) polyad weighted by difference in a–A and b–B 
transition probabilities. These transition probabilities often have simple quantum number inter
relationships. In this simple (A,B) case, all populations are modulated at the same frequency, ω+–, but with 

different amplitudes. More complicated when there are more than 2 states in the intermediate polyad. 

So we sample dynamics in (AB) polyad through τ-dependent populations in (abcd) polyad. We do not 

sample dynamics in (abcd) polyad. 

Multi-step dynamics in frequency domain? See next example. 



0 
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Overtone Spectroscopy in Larger Molecules 

4RH + other 3RH + other 2RH + other 
5R–H 

simple overtone spectrum: 

nRH (n (n

sp

+1)RH +2)RH 

extra feature due to 
ecial resonance 

Expect increasing width as you go to higher overtone. Intensity decreases by factor of 10 to 100 per 
overtone. Spacings are ~ω. (See K. K. Lehmann, J. Chem. Phys. 93, 6140 (1990).) 

Double resonance 
Based on change in anharmonicity of RH stretch 

/ 2( ) = ω(v +1 2) + x  v  +1 2)G v  / (


∆G v  +1 2) = G v  +1) − ( ) = + 2x  v  +1) ( x < 0)
( / ( G v  ω ( 

5 R–H (first laser) + 1 R–H (second laser) 

6 ← 5 5 ←4 4 ← 3 

5 4Ι ∝ 6 

ω– 12|x| ω– 10|x| ω– 8|x| 
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What do we see in the R–H fundamental region (actually 5R–H + 1R–H)? 

*	 extent of mixing of 5 R–H into bath. For each quantum of R–H transferred into the bath, the 
density of dark states increases but the coupling matrix elements decrease (sequential vs. direct 
coupling mechanism?). 

*	 intensity (area) of each anharmonically split out clump tells fractionation into lower # of quanta 
of RH and width tells rate of transfer n → n – 1. 

We see where the 5R–H pluck goes, and how fast. Early steps in the relaxation are typically dependent on a 
doorway state lying near the bright state. If this near degeneracy does not occur, there is a bottleneck in the 
energy flow. 

What would you observe in an experiment with two short pulses (5ω) τ (1ω) with variable delay? 

*	 in the absorption spectrum of the second pulse? 
*	 in the populations produced? 


