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Rate of Absorption and Stimulated Emission

The rate of absorption induced by the field is

wi(@) = 2_;[2|E0 (0012 k| & f>|2 S(wy — o)

The rate is clearly dependent on the strength of the field. The variable that you can most easily
measure is the intensity / (energy flux through a unit area), which is the time-averaged value of the
Poynting vector, S

S=_(ExB)
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Another representation of the amplitude of the field is the energy density

U= 1 = SL E; (for a monochromatic field)
T

Using this we can write

4 .
w,, = h—an(co) (k|& 7O 8(w, -o)
or for an isotropic field where ‘EO f(‘ = ‘EO -y = ‘EO 7| = %|E0|2
4 _ P
Wi = 37 U((D)|“kf;| 5( @y, — )
or more commonly
wy, =B, U(wkf)
4752 2 . . .
B, = W| M| Einstein B coefficient

(this is sometimes written as B, , = (275/ 3n° )|p,tu|2 when the energy density is in v).
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U can also be written in a quantum form, by writing it in terms of the number of photons N

2 3
Niow =10 U=N"2
8n n'c

B is independent of the properties of the field. It can be related to the absorption cross-section, Ga.

total energy absorbed / unit time

o, =
* total incident intensity (energy/ unit time/ area)

_ho-w,, ho-B, U(o,)

I cU(o,)

/10)
Op = By,
C

More generally you may have a frequency dependent absorption coefficient
o, (®)c By, (0)=B,, g(®) where g(o) is a lineshape function.

The golden rule rate for absorption also gives the same rate for stimulated emission. We find for
two levels |rn> and |n> :

an = Wmn
B,, =B

nm mn

The absorption probability per unit time equals the stimulated emission probability per unit time.

Also, the cross-section for absorption is equal to an equivalent cross-section for stimulated
emission, (c,) =(og;)

mn



Now let’s calculate the change in the intensity of incident light, due to absorption/stimulated

emission passing through sample (length L).

or

dl=-N, o, Idx + N _ oy [dx

%: —(N,-N,)o, dx
l: e—ANc;.dL
I0
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N, ;N_ populations
AN=N —-N, : pop. difference

for high freq. AN =N, =N

C:mol/L e//molecule

€=2303N.c,
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SPONTANEOUS EMISSION

What doesn’t come naturally out of semi-classical treatments is spontaneous emission—transitions
when the field isn’t present.

To treat it properly requires a quantum mechanical treatment of the field, where energy is
conserved, such that annihilation of a quantum leads to creation of a photon with the same energy.
We need to treat the particles and photons both as quantized objects.

You can deduce the rates for spontaneous emission from statistical arguments (Einstein).

For a sample with a large number of molecules, we will consider transitions between two states
|rn> and|n> with £, > E, .

o m)
an Wmn
E, )

The Boltzmann distribution gives us the number of molecules in each state.

—hw,, kT
N e @y

m

/' N, =

n

For the system to be at equilibrium, the time-averaged transitions up W, must equal those down
W._ . In the presence of a field, we would want to write for an ensemble

?
Nm Bnm U(a)mn): Nn an U(a)mn)

but clearly this can’t hold for finite temperature, where N,, < N, , so there must be another type of
emission independent of the field.

So we write

W, =W

N, (Anm +B,, U(o,, )) =N, B,. U(o,,)

If we substitute the Boltzmann equation into this and use B,,, = B,,,, we can solve for 4,,,:
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Anm = Bnm U(a)mn )(ehw’”” e - 1]

For the energy density we will use Planck’s blackbody radiation distribution:

ho’ 1

2 elom/KT

E‘,—J \—W—J
U(D

(No)

U(o)=

U, i1s the energy density per photon of frequency o.

<Nw> is the mean number of photons at a frequency o.

hw’

A, =—Bmn Einstein A coefficient
T c

The total rate of emission from the excited state is

. ho’
Wom =B U0, )+ AL using U(w,,, ) =N——
- C
ho'
=g B, (N+1)

Notice, even when the field vanishes (N — 0), we still have emission.
Remember, for the semiclassical treatment, the total rate of stimulated emission was

3
w =h&Bnm(N)

nm TCZ C3
If we use the statistical analysis to calculate rates of absorption we have

ho’
Wi =5 BN

T C

The A coefficient gives the rate of emission in the absence of a field, and thus is the inverse of the
radiative lifetime:

T =

rad

1
A



Relaxation Leads to Line-broadening

What happens to the probability of absorption if an excited state decays exponentially?

|6
k n 1%

V'sin cot ) ) )
\l/ ... for instance by coupling to continuum

|k) relaxes exponentially

10

P, cexp [—Ft]

First-order result:

_l t
by :EL” dr (ke
or ihﬁb =" (1)
ot k kel
If we add relaxation to description of by :
0 ; r
h—b, ="' V;,(t)—=b
RPY ke (©) 5k

(We write this in analogy to coupling to continuum |) where I' =W, .)

Now we have

— Eo_a)kl |:ei(a)k,+ w)_ei(wk/ _w)t}ﬁkf _E bk(t)
2ihw 2

The solution to the differential equation

iot

y+ay=Dbe is
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)=Ae“ + 2

b(t)=Ae T2 4 Ey Dy Ky
2ihw

ei(w,d+ o) ei(a)k,—wy
F/2+i(a)k€+a))_ [/2+ (o - )

Let’s look at absorption only—Ilong time limit:

by (1) = Eoutkliy A
k 2hw Wy —0—il'/2

The probability of transition:

E§|ﬂkf|2 1
A (o - o) +T7/4

B =|bk|2 =

Lorentzian lineshape:

P«

The linewidth is related to the system rather than how we introduced the perturbation.

Linewidth related to relaxation dynamics.



