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QUANTUM LINEAR RESPONSE FUNCTION 

Let’s treat the problem of the response of a system to an applied external force.  Again, 

H t  0( ) = H − f ( )t  A  = H0 +V  t  )(

External agent acting 
on internal variable 

Hamiltonian for equilibrium system

(treat exactly) 


If V(t) represents a small change, we can treat this with perturbation theory in the interaction 


picture.  Now A is an operator. We want to describe A t 
( )  which we will get by ensemble 


averaging the expectation value of A(t). Remember the expectation value for a single 


wavefunction is 


A t  t  A  t  U † (t ,t  ) AU  t ,t  0 )=  ψ  ψ( )  = ψ ( )  ψ ( )  0 ( 

= ψ  †U A  UI ψI I 

Where the propagation in the interaction picture is 


UI (t ,t ) = +
−i 

∫
t
V ( )U (τ,t ) dτ  (exact)
0 1 I τ I 0t0=

For the linear response we use the first order solution: 

†) t V  t U  0 t


( )  † t  AU  0 ( ) 

VI (τ = U0 ( )  ( )  ( )  

= − f t U  0 ( )  t


( ) 
= − f t  AI


I ( 
t


U t,t  ) = +
i dτ f ( ) A (τ)τ I0 1 
= ∫t0 
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So, we can now calculate the value of the operator A at time t  

( ) = U  A  U  A t  I
†

I I


i t
   = 1− ∫t0 

′ ( ) A t′)

 A t ) 1+

i t
dt  f  t  ′ A t′)

 =  

≅ A t  
= ∫t0 

dt  f  t  ′ I ( ) I ( I ( ) A t )} retaining linear terms  

dt  f  t  ′ I (  
I (

 = ∫t0 

′ ( )  I ( 

I ( ) +
i t 

′ ( ){A t  A t  ′) − A t′ I (

= A t  
= ∫t0 

dt  f  t  ′  I ( ) I (  

Now, using A t  † t  AU  0 ( ) and setting t0 = 0  we can write 

I ( ) +
i t 

′ ( )  A t  , A  t  ′) 

( ) = U0 ( )  tI

A  t  I ( ) +
i t

dt  f  t  ′  I (( ) = A t  ′ ( ) A t − t′) , AI (0) 
= ∫0 

= A t  
= ∫0 

d  f  t  − τ) A (τ) , A  (0) where  τ = t − t′ I ( ) +
i ∞

τ ( I I 

ψ ANow, what we want is the expectation value of A, that is ψ , averaged over the ensemble, 

which we will write A t( )  for the moment.  Taking into account that the force is applied 

equally to each member of ensemble we have 

A t  
= ∫0 

τ (  I ( )  = A +
i ∞

d  f  t  − τ) AI (τ) , A  (0) 

The first term is independent of f, and so it comes from an equilibrium ensemble average 

I n IA p n A n A= =∑ 
n 
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Comparing this with the expression for the linear response function, we find 

1 τ = −  τ I R( ) ( )  i 
AI ( ) , A (0) τ ≥  0 

= 

= 0 τ<0 

or as it is sometimes written with the unit step function: 

1⇒ R( ) ( )  i ( ) AI ( ) ,  A  (0)τ  = −  Θ τ  τ I = 

Note that the time development of the system with the applied external field is governed by the 

dynamics of the equilibrium system.  All of the time-dependence in the response function is 

under H0. 

The response function is proportional to the difference of two complex correlation functions:   

1R( ) ( )  τ I 0 Iτ = −  
i { AI ( ) A (0) − AI ( ) A (τ) }= 

*τ  −  CAA ( ))= −
i (CAA ( )  τ 
= 

2 
τ τ  τ = C′′( )  where C′′( ) = Im C ( ) 

= 

If we express the correlation function in the eigenstate description: 
2 − ω jntiτ = ∑ p eC ( )  n Ajn 

n, j  

then 

21R( ) ( )  2 ∑ p Aτ =  sin  ω jntn jn = n, j  

( ) τNote that R 1 ( ) is real! 
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Alternatively, in the density matrix representation, 

1 *τ = −  
i (CAA ( )  τR( ) ( )  τ  −  CAA ( ))= 

= −
i { Tr A ( ) A (0)ρ ) − Tr A ( ) A (τ  ρ  eq  )}( I τ I  eq  ( I 0 I )
= 

= −
i Tr (A ( ) , A (0) ρeq  ) I τ I = 

The response function and energy absorption 

Let’s investigate the relationship between the linear response function and the absorption of 

energy from an external field 

t (H = H0 − f ( ) A = H0 − µ ⋅ E t  ) 

This expression gives the energy of the system, so the rate of energy absorption averaged over 

the non-equilibrium ensemble is described by:* 

∂H ∂f ( ) .= −  A t  
∂t ∂t 

The time-averaged rate of energy absorption: 

q� = dt − A t T 
1 

∫0 

T 


 ∂

∂ 

f
t 

( )

 

(1) 

+ ∫0 

∞ 11 T ∂f t( ) dt A dτ R( ) ( ) f (t − τ)τ  
= 

T ∫0 ∂t  

where 

1R( ) ( )  i 
µ  τ  µ (0)τ = −   I ( ) , I = 

* See Wang (1985). 
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If we have a monochromatic light source:   

− iωt +E0
* eiω tf t 2( ) = E0 cosωt = 1 [E0 e ] (2) 

Looking at the second term in (1):   

τ  0 e 
− ω  −τ) * ω  −τ)∫0 

∞
τ 1 i t  (1 d R( ) ( ) E ( + E0 e

i t  
2 

(3) 
* iωt (= 1

2 E0 e − ω χ ω +  E0 e χ −ω)i t  ( )   

Differentiating (2) and plugging into (1) we have:   

1 i i ( 2  i i t  *  
 2  

− ωt ( )  * ωq� = −  A  T f ( ) − f (0) −
T 
1 

∫0 

T 
dt 1 − ω  E0 e − ω  + ω  E0 eiωt  × 1 E0 e χ ω +  E0 ei t  χ −ω) 

T 

Let’s cycle average this expression (set T = 2π / ω ). First term vanishes.  Cross terms in second 
integral vanish.   

 1 T − iωt e+ iω tdt e =  1 T ∫0
 1 T 
dt e− iωt − iωt
 e =  0

T ∫0


i
 2 �∴ q = ω χ −ω − χ ω) ( ) ( E04 

ω 2 q� =  χ  ω  ′′( )E02 

The absorption of energy by the system is related to the imaginary part of the susceptibility!   

2�( )  
E� in 

= 
4 

c 
χ  ω  α ω =  

q� πω ′′( )  Ein = 
c E08π 
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•	 The absorption lineshape is related to the imaginary part of χ and 

•	 χ  is related to the Fourier transform of the correlation function that describes the 
fluctuations and dynamics of the equilibrium system [CAA (t)]. 

χ ω =  ( ) (′′( )  1 (χ ω − χ −ω))
2i

∞1 ∞ ω= {∫ dt ei t  CAA ( ) − C (−t ) − ∫0 
dt e − ω  CAA ( ) − C (−t )} t AA  

i t  
 t AA 02= 

∞ i t ′ω′	  t′) AA (CAA ( ) 	
dt e CAA (− − C (t′) 

0 ω′ 
= 

2
1 
= 

ω −  CAA (−ω))	
=

∫0 

∫−∞ 
dt ei t′ CAA ( ) − C (−t′)t′ AA 

From problem set: the correlation function obeys the detailed balance condition:   

) =CAA (−ω = e−β ω CAA (ω) 

This relationship reflects the fact that upward and downward transition rates between states 

separated by ω are related by the population difference.  Remember, from F.G.R. that the rates k 

are directly proportional to CAA. 

This allows us to write: 

=CAA ( )  ) (1ω ± CAA (−ω =  ±  e−β ω )CAA (ω) 

So 
−β ω =χ ω =  

1 (1− e )CAA ( )′′( ) 	 ω 
2= 

+∞ = i tω ( ) A(0) dt  = 
1 (1− e−β ω ) e  A  t  
2= ∫−∞ 

This is the result from before – the absorption of energy is dictated by the equilibrium 

fluctuations of the system.  Inserting into α(ω) in the previous page we have the result from 

( )  2πω (1− e−β ω ) +∞ 
ei t  ( ) A(0) dt  earlier: α ω =  = ∫−∞ 

ω A  t  
=c 
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Relaxation of a prepared state 

( )  tThe impulse response function R 1 ( ) describes the behavior of a system initially at equilibrium 

that is driven by an external field. To describe the relaxation of a prepared state, the system must 

initially be in a non-equilibrium state, and then we will 

watch the return to equilibrium.  This behavior is 

described by step response function SAA , which describes 

the behavior when a system held away from equilibrium 

by an external field is suddenly released.  Just as we 

expect that the impulse response to rise from zero and be 

expressed as an odd function in time, the step response t 
should decay from a fixed value and look even in time.  

The step response comes from holding the system with a constant field H H0 − fA   until a time 

AAS 
( )1 
AAR 

= 

t0 when the system is released, and it relaxes to the state H H0 . You expect to describe this= 

behavior by integrating the impulse response over all times < t0. 

• Response Functions are real. 

• Quantum Correlation Functions are complex:  C(−t) = C*(t) 

• Classical Correlation Functions are real and even:  C t( ) = C(−t) 

For relaxation in terms of a real observable that is even in time, we construct a symmetrized 

function: 

t 1SAA ( ) = 2 { AI ( ) A (0) + AI (0) AI (t ) } = 1
2 AI (t ) ,  AI (0) + 

t I 

1= 2 {CAA ( ) + C (−t )}t AA 

= C′ tAA ( )  

S is related to the real part of the correlation function, and defined for t ≥ 0 . The impulse 

response is related to the time-derivative of the step response, and in the classical limit  
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( ) tR 1 ( ) = 
1 d 

SAA t( )  (high T limit)
kT dt 

t i tIf we define SAA ( )  1 
π ∫0 

∞
dt  S  ( ) e , thenω =  ω 

2 AA 

−β ω =ω = 1 CAA ( )   2SAA ( )  ω + CAA (−ω) = 1 (1 + e )CAA (ω)2  

 β ω  ω= ′′( )  1 tanh   SAA ( )  ⇒ SAA ( )  (classical limit) χ ω = ω  ω  
=  2  2kT 

This is the fluctuation-dissipation theorem (Chemistry Nobel Prize, 1968; proven in 1951 by 

Callen and Welton). 

Lars Onsager (1930): The relaxation of macroscopic non-equilibrium disturbance is governed by 

the same laws as the regression of spontaneous microscopic fluctuations in an equilibrium state.   


