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Quantized Radiation Field 

Spontaneous emission, like fluorescence, phosphorescence, spontaneous light scattering, Raman 
scattering, don’t come naturally out of a semiclassical treatment of the field-matter interaction.  
You need to quantize the E.M. field, a treatment that also satisfies energy conservation.   

Background 

Our treatment of the vector potential has drawn on the monochromatic plane-wave solution to the 
wave-equation for A. The quantum treatment of light as a particle describes the energy of the light 
source as proportional to the frequency ω , and the photon of this frequency is associated with a 
cavity mode with wavevector k = ω / c that describes the number of oscillations that the wave can 
make in a cube with length L. For a very large cavity you have a continuous range of allowed k. 
The cavity is important for considering the energy density of a light field, since the 
electromagnetic field energy per unit volume will clearly depend on the wavelength λ = 2π/|k| of 
the light. 

Boltzmann used a description of the light radiated from a blackbody source of finite volume at 
constant temperature in terms of a superposition of cavity modes to come up with the statistics for 
photons. The classical treatment of this problem says that the energy density (modes per unit 
volume) increases rapidly with increasing wavelength.  For an equilibrium body, the energy 
absorbed has to equal the energy radiated, but clearly as frequency increases, the energy of the 
radiated light should diverge. Boltzmann used the detailed balance condition to show that the 
particles that made up light must obey Bose-Einstein statistics.  That is the equilibrium probability 
of finding a photon in a particular cavity mode is given by  

1
ω =f ( )  

e ω/ kT  −1 

From our perspective (in retrospect), this should be expected, because the quantum treatment of 
any particle has to follow either Bose-Einstein statistics or Fermi-Dirac statistics, and clearly light 
energy is something that we want to be able to increase arbitrarily.  That is, we want to be able to 
add mode and more photons into a given cavity mode.  By summing over the number of cavity 
modes in a cubical box (using periodic boundary conditions) we can determine that the density of 
cavity modes (a photon density of states),  

ω =  2 3π c
g ( )  ω2 

Using the energy of a photon, the energy density per mode is 

g ( )  ω3 

ω ω =  2 3π c 
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and so the probability distribution that describes the quantum frequency dependent energy density 
is 

1 u (ω =  ω  ω  f ω =  
ω3 

)  g ( ) ( )  2 3  ω / kT  −1π c e  

The Quantum Vector Potential 
So, for a quantized field, the field will be described by a photon number Nk j , which represents the 

number of photons in a particular mode (k , j ) with frequency ω = ck  in a cavity of volume v. For 

light of a particular frequency, the energy of the light will be Nkj ω . So, the state of the 

electromagnetic field can be written:   

= , …ϕEM Nk , j  ,  Nk2 , j2
,  Nk3 , j31 1  

If my matter absorbs a photon from mode k2 , then the state of my system would be 

= −1,  Nk3 , j , …ϕ′EM k , jN ,  k2 , j21 

What I want to do is to write a quantum mechanical Hamiltonian that includes both the matter and 

the field, and then use first order perturbation theory to tell me about the rates of absorption and 

stimulated emission.  So, I am going to partition my Hamiltonian as a sum of a contribution from 

the matter and the field: 

H0 = HEM  + HM 

If the matter is described by ϕ , then the total state of the E.M. field and matter can be M 

expressed as product states: 

ϕ = ϕEM ϕM 

And we have eigenenergies 

E EEM + EM = 
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Now, if I am watching transitions from an initial state  to a final state k , then I can express the 

initial and final states as:   

matter field 
; N  , N  , N  …, N  ,  …ϕ =I 1 2 3 i 

Nik 
k; N , N , N , … , N ±1, …ϕ =F 1 2 3 i 

 N − 

 + : emission  
 

i 1  

 − : absorption 
 

Where I have abbreviated Ni ≡ Nki , j
, the energies of these two states are:   

i 

EI = E  + ∑N j ( ω j ) ω j = ck j 
j 

EF = Ek + ∑ N ( ω j )± ωj i 
j 

 k 
So looking at absorption   , we can write the Golden Rule Rate for transitions between 

   
states as:   

22π Ewk  = δ(E −  − ω) V  t  )(k ϕF ϕI  

Now, let’s compare this to the absorption rate in terms of the classical vector potential: 

2π 
δ ω − ω) q2 22 

ˆA k ∈j ⋅p wk  = 2 ∑ ( k  k, j2v  kj m 

ˆ( ∈⋅pIf these are to be the same, then clearly V t)must have part that looks like ( ) that acts on the 
matter, but it will also need another part that acts to lower and raise the photons in the field.  Based 
on analogy with our electric dipole Hamiltonian, we write:   

( ) =
−q 1 ˆ ˆ p† ˆ* ˆ †V t  ∑ (p ⋅∈j A +  ⋅∈j A )m v k k, j k k, j 

k , j 
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where A and  Aˆ ˆ †  are lowering/raising operators for photons in mode k . These are operators in k, j  k , j  

the field states, whereas pk  remains only an operator in the matter states.  So, we can write out the 

matrix elements of V as 

q 1  ˆˆV t  = − k p ⋅∈ , N −1,  ……  …,  N  ,  …( )ϕF ϕI k i Ai i m v


1
 ( )k ∈̂⋅µ Ai 
−= ωk  v 

Comparing with our Golden Rule expression for absorption, 

2 
2(wk  =

π 
2 δ ωk − ω)ωk

2 E0
2 µk2 ω

We see that the matrix element 

2 E0
2 

A( ) = 
E0 but = N ω
i 

− 

4vω2 8π


2π  
= N 

vω 

So we can write 

ˆ 2π  A = ak, j k j,v ω 

ˆ † 2π  †= aAk, j  k j,v ω 

where a, a† are lowering, raising operators. So 

A = ∑ 
2π  ˆ e ( ⋅ −ωt ) + a† −i k  r  i k  r  ( ⋅ −ωt ) )ˆ ∈j (a ekj kj

k, j  v ω
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So what we have here is a system where the light field looks like an infinite number of harmonic 

oscillators, one per mode, and the field raises and lowers the number of quanta in the field while 

the momentum operator lowers and raises the matter:   

H HEM + HM + V  t  0 (= ( ) = H + V  t  ) 

† 1HEM = ∑ ωk (akj akj + 2 )

k, j


2

i


i 2mi 

+ Vi ( r  ,  t  )HM = ∑ p 

( ) =
−qV t  A  p  ⋅ 
m 

2π  (∈ ⋅  p a  ( ⋅ −ωt ) † −i k  r  −ωt )( ⋅ = ∑ q eˆ j ) 
 k, j e

i k  r  + ak , j  
 

 k, j m v  ωk 

−= V( ) + V(+) 

Let’s look at the matrix elements for absorption (ω k  > 0) 

−V( )  ˆk, N −1 , N = 
−q 2π  k, N −1 (∈⋅p)a  , N i i i m v ω i 

−q 2π  
∈⋅p= N k ˆ  

m v ω i 

2π ω ˆ= − i Ni ∈⋅µk  v 

and for stimulated emission (ω k  < 0) 
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+V( )  †ˆk, N +1  , N = 
−q 2π  k, N +1 (∈⋅p)a  , N i i i m v ω i 

−q 2π  
= N 1  k ˆ ⋅ˆ+ ∈ p  

m v ω i 

2π ω 1 ˆ= − i Ni +  ∈⋅µk  v 

We have spontaneous emission!  Even if there are no photons in the mode (Nk = 0), you can still 
have transitions downward in the matter which creates a photon.   

Let’s play this back into the summation-over-modes expression for the rates of 
absorption/emission by isotropic field.   

22π ω2 
+V( )dω 

 (2π )
δ ω  − ω) dΩ∑ k,  N  +1  ,  N  wk  = ∫ 2 2 3 ( k  ∫ i i 

j 

2π ω2 
2 = 2 π 

3 (2π ω)(Ni +1) 8π 
 µk  

 
 (2 c)  

average over polarization


3
number density per mode 

4 Ni + ω3( 1) 2 = µk3 c3 

= Bk  (Ni +1)  ω3 

2 3π c  
energy density

per mode


So we have the result we deduced before. 


