THE RELATIONSHIP BETWEEN $U\left(t, t_{0}\right)$ AND $c_{n}(t)$

For a time-dependent Hamiltonian, we can often partition

$$
H=H_{0}+V(t)
$$

H_{0} : time-independent; $V(t)$: time-dependent potential. We know the eigenkets and eigenvalues of H_{0} :

$$
H_{0}|n\rangle=E_{n}|n\rangle
$$

We describe the initial state of the system $\left(t=t_{0}\right)$ as a superposition of these eigenstates:

$$
\left|\psi\left(\mathrm{t}_{0}\right)\right\rangle=\sum_{\mathrm{n}} \mathrm{c}_{\mathrm{n}}|\mathrm{n}\rangle
$$

For longer times t, we would like to describe the evolution of $|\psi\rangle$ in terms of an expansion in these kets:

$$
|\psi(t)\rangle=\sum_{n} c_{n}(t)|n\rangle
$$

The expansion coefficients $c_{k}(t)$ are given by

$$
c_{k}(t)=\langle k \mid \psi(t)\rangle=\langle k| U\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle
$$

Alternatively we can express the expansion coefficients in terms of the interaction picture wavefunctions

$$
b_{k}(t)=\left\langle k \mid \psi_{I}(t)\right\rangle
$$

(This notation follows Cohen-Tannoudji.) Notice

$$
\begin{aligned}
\mathrm{c}_{\mathrm{k}}(\mathrm{t}) & =\langle\mathrm{k} \mid \psi(\mathrm{t})\rangle=\langle\mathrm{k}| \mathrm{U}_{0} \mathrm{U}_{\mathrm{I}}\left|\psi\left(\mathrm{t}_{0}\right)\right\rangle \\
& =\mathrm{e}^{-\mathrm{i} \omega_{\mathrm{k}} \mathrm{t}}\langle\mathrm{k}| \mathrm{U}_{\mathrm{I}}\left|\psi\left(\mathrm{t}_{0}\right)\right\rangle \\
& =\mathrm{e}^{-\mathrm{i} \omega_{\mathrm{k}} \mathrm{t}} b_{\mathrm{k}}(\mathrm{t})
\end{aligned}
$$

so that $\left|b_{k}(t)\right|^{2}=\left|c_{k}(t)\right|^{2}$. Also, $b_{k}(0)=c_{k}(0)$. It is easy to calculate $b_{k}(t)$ and then add in the extra oscillatory term at the end.

Now, starting with

$$
i \hbar \frac{\partial\left|\psi_{I}\right\rangle}{\partial t}=V_{I}\left|\psi_{I}\right\rangle
$$

we can derive an equation of motion for b_{k}

$$
\text { inserting } \sum_{\mathrm{n}}|\mathrm{n}\rangle\langle\mathrm{n}|=1
$$

$$
\begin{aligned}
\mathrm{i} \hbar \frac{\partial \mathrm{~b}_{\mathrm{k}}}{\partial \mathrm{t}} & =\langle\mathrm{k}| \mathrm{V}_{\mathrm{I}} \mathrm{U}_{\mathrm{I}}\left|\psi_{\mathrm{I}}\left(\mathrm{t}_{0}\right)\right\rangle \quad \psi_{I}\left(t_{0}\right)=\sum_{n} b_{n}|n\rangle \\
& =\sum_{\mathrm{n}}\langle\mathrm{k}| \mathrm{V}_{\mathrm{I}}|\mathrm{n}\rangle\langle\mathrm{n}| \mathrm{U}_{\mathrm{I}}\left|\psi_{\mathrm{I}}\left(\mathrm{t}_{0}\right)\right\rangle \\
& =\sum_{\mathrm{n}}\langle\mathrm{k}| \mathrm{V}_{\mathrm{I}}|\mathrm{n}\rangle \mathrm{b}_{\mathrm{n}}(\mathrm{t}) \\
\mathrm{i} \hbar \frac{\partial \mathrm{~b}_{\mathrm{k}}}{\partial \mathrm{t}} & =\sum_{\mathrm{n}} \mathrm{~V}_{\mathrm{kn}}(\mathrm{t}) \mathrm{e}^{-\mathrm{i} \mathrm{\omega}_{\mathrm{nk}}} \mathrm{~b}_{\mathrm{n}}(\mathrm{t})
\end{aligned}
$$

This equation is an exact solution. It is a set of coupled differential equations that describe how probability amplitude moves through eigenstates due to a time-dependent potential. Except in simple cases, these equations can't be solved analytically, but it's often straightforward to integrate numerically.

Exact Solution: Resonant Driving of Two-level System

Let's describe what happens when you drive a two-level system with an oscillating potential.

$$
\mathrm{V}(\mathrm{t})=\mathrm{V} \cos \omega \mathrm{t}=\mathrm{Vf}(\mathrm{t})
$$

This is what you expect for an electromagnetic field interacting with charged particles: dipole transitions. The electric field is

$$
\overline{\mathrm{E}}(\mathrm{t})=\overline{\mathrm{E}}_{0} \cos \omega \mathrm{t}
$$

For a particle with charge q in a field \bar{E}, the force on the particle is

$$
\overline{\mathrm{F}}=\mathrm{q} \overline{\mathrm{E}}
$$

which is the gradient of the potential

$$
\mathrm{F}_{\mathrm{x}}=-\frac{\partial \mathrm{V}}{\partial \mathrm{x}}=\mathrm{qE}_{\mathrm{x}} \Rightarrow \mathrm{~V}=-\mathrm{qE}_{\mathrm{x}} \mathrm{x}
$$

$q x$ is just the x component of the dipole moment μ. So matrix elements in V look like:

$$
\langle\mathrm{k}| \mathrm{V}(\mathrm{t})|\ell\rangle=-\mathrm{qE}_{\mathrm{x}}\langle\mathrm{k}| \mathrm{x}|\ell\rangle \cos \omega \mathrm{t}
$$

More generally,

$$
V=-\bar{E} \cdot \bar{\mu} .
$$

So,

$$
\begin{gathered}
\mathrm{V}(\mathrm{t})=\mathrm{V} \cos \omega \mathrm{t}=-\overline{\mathrm{E}}_{0} \cdot \bar{\mu} \cos \omega \mathrm{t} . \\
\mathrm{V}_{\mathrm{k} \ell}(\mathrm{t})=\mathrm{V}_{\mathrm{k} \ell} \cos \omega \mathrm{t}=-\overline{\mathrm{E}}_{0} \cdot \bar{\mu}_{\mathrm{k} \ell} \cos \omega \mathrm{t}
\end{gathered}
$$

We will now couple our two states $|k\rangle+|\ell\rangle$ with the oscillating field. Let's ask if the system starts in $|\ell\rangle$ what is the probability of finding it in $|k\rangle$ at time t ?

The system of differential equations that describe this situation are:

$$
\begin{aligned}
& \mathrm{i} \hbar \frac{\partial}{\partial \mathrm{t}} \mathrm{~b}_{\mathrm{k}}(\mathrm{t})=\sum_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}}(\mathrm{t}) \mathrm{V}_{\mathrm{kn}}(\mathrm{t}) \mathrm{e}^{-\omega_{\mathrm{nk}} \mathrm{t}} \\
& =\sum_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}}(\mathrm{t}) \mathrm{V}_{\mathrm{kn}} \mathrm{e}^{-\mathrm{i} \mathrm{\omega}_{\mathrm{nk}} \mathrm{t}} \times \frac{1}{2}\left(\mathrm{e}^{-\mathrm{i} \omega t}+\mathrm{e}^{+i \omega t}\right) \\
& \mathrm{i} \hbar \dot{\mathrm{~b}}_{\mathrm{k}}=\frac{1}{2} \mathrm{~b}_{\ell} \mathrm{V}_{\mathrm{k} \ell}\left[\mathrm{e}^{\mathrm{i}\left(\omega_{\mathrm{k} \ell}-\omega\right) \mathrm{t}}+\mathrm{e}^{\mathrm{i}\left(\omega_{\mathrm{k} \ell}+\omega\right) \mathrm{t}}\right]+\frac{1}{2} \mathrm{~b}_{\mathrm{k}} \mathrm{y}_{\mathrm{kk}}\left[\mathrm{e}^{\mathrm{i} \omega \mathrm{t}}+\mathrm{e}^{-\mathrm{i} \omega \mathrm{t}}\right] \quad=\text { (1) and (2) } \\
& \mathrm{i} \hbar \dot{\mathrm{~b}}_{\ell}=\frac{1}{2} \mathrm{~b}_{\ell} Y / \ell\left[\mathrm{e}^{\mathrm{i} \omega \mathrm{t}}+\mathrm{e}^{-\mathrm{i} \omega \mathrm{t}}\right]+\frac{1}{2} \mathrm{~b}_{\mathrm{k}} \mathrm{~V}_{\ell \mathrm{k}}\left[\mathrm{e}^{\mathrm{i}\left(\omega_{\text {低 }}-\omega\right) \mathrm{t}}+\mathrm{e}^{\mathrm{i}\left(\omega_{k k}+\omega\right) \mathrm{t}}\right] \quad=(3) \text { and (4) } \\
& \text { or } \\
& {\left[\mathrm{e}^{-\mathrm{i}\left(\omega_{k c}+\omega\right) \mathrm{t}}+\mathrm{e}^{-\mathrm{i}\left(\omega_{k k}-\omega\right) \mathrm{t}}\right]}
\end{aligned}
$$

We can drop (2) and (3). For our case, $\mathrm{V}_{\mathrm{ii}}=0$.

We also make the secular approximation (rotating wave approximation) in which the nonresonant terms are dropped. When $\omega_{k \ell} \approx \omega$, terms like $e^{ \pm i \omega t}$ or $e^{i\left(\omega_{k \ell}+\omega\right) t}$ oscillate very rapidly and so don't contribute much to change of c_{n}.

So we have:

$$
\begin{align*}
& \dot{\mathrm{b}}_{\mathrm{k}}=\frac{-\mathrm{i}}{2 \hbar} \mathrm{~b}_{\ell} \mathrm{V}_{\mathrm{k} \ell} \mathrm{e}^{\mathrm{i}\left(\omega_{\mathrm{k}}-\omega\right) \mathrm{t}} \tag{1}\\
& \dot{\mathrm{~b}}_{\ell}=\frac{-\mathrm{i}}{2 \hbar} \mathrm{~b}_{\mathrm{k}} \mathrm{~V}_{\ell \mathrm{k}} \mathrm{e}^{-\mathrm{i}\left(\omega_{\mathrm{k} \ell}-\omega\right) \mathrm{t}} \tag{2}
\end{align*}
$$

Note that the coefficients are oscillating out of phase with one another.
Now if we differentiate (1):

$$
\begin{equation*}
\ddot{\mathrm{b}}_{\mathrm{k}}=\frac{-\mathrm{i}}{2 \hbar}\left[\dot{\mathrm{~b}}_{\ell} \mathrm{V}_{\mathrm{k} \ell} \mathrm{e}^{\mathrm{i}\left(\omega_{\mathrm{k} \ell}-\omega\right) \mathrm{t}}+\mathrm{i}\left(\omega_{\mathrm{k} \ell}-\omega\right) \mathrm{b}_{\ell} \mathrm{V}_{\mathrm{k} \ell} \mathrm{e}^{\mathrm{i}\left(\omega_{k \ell}-\omega\right) \mathrm{t}}\right] \tag{3}
\end{equation*}
$$

Rewrite (1):

$$
\begin{equation*}
\mathrm{b}_{\ell}=\frac{2 \mathrm{i} \hbar}{\mathrm{~V}_{\mathrm{k} \ell}} \dot{\mathrm{~b}}_{\mathrm{k}} \mathrm{e}^{-\mathrm{i}\left(\omega_{\mathrm{k}} \epsilon-()\right) \mathrm{t}} \tag{4}
\end{equation*}
$$

and substitute (4) and (2) into (3), we get linear second order equation for b_{k}.

$$
\ddot{\mathrm{b}}_{\mathrm{k}}-\mathrm{i}\left(\omega_{\mathrm{k} \ell}-\omega\right) \dot{\mathrm{b}}_{\mathrm{k}}+\frac{\left|\mathrm{V}_{\mathrm{k} \ell}\right|^{2}}{4 \hbar^{2}} \mathrm{~b}_{\mathrm{k}}=0
$$

This is just the second order differential equation for a damped harmonic oscillator:

$$
\begin{aligned}
& a \ddot{x}+b \dot{x}+c x=0 \\
& x=e^{-(b / 2 a) t}(A \cos \mu t+B \sin \mu t) \quad \mu=\frac{1}{2 a}\left[4 a c-b^{2}\right]^{1 / 2}
\end{aligned}
$$

With a little more work, we find
(remember $\mathrm{b}_{\mathrm{k}}(0)=0$ and $\mathrm{b}_{\ell}(0)=1$)

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{k}}=\left|\mathrm{b}_{\mathrm{k}}(\mathrm{t})\right|^{2}=\frac{\left|\mathrm{V}_{\mathrm{k} \ell}\right|^{2}}{\left|\mathrm{~V}_{\mathrm{k} \ell}\right|^{2}+\hbar^{2}\left(\omega_{\mathrm{k} \ell}-\omega\right)^{2}} \sin ^{2} \Omega_{\mathrm{r}} \mathrm{t} \\
& \Omega_{\mathrm{R}}=\frac{1}{2 \hbar}\left[\left|\mathrm{~V}_{\mathrm{k} \ell}\right|^{2}+\hbar^{2}\left(\omega_{\mathrm{k} \ell}-\omega\right)^{2}\right]^{1 / 2} \\
& \mathrm{P}_{\ell}=1-\left|\mathrm{b}_{\mathrm{k}}\right|^{2}
\end{aligned}
$$

Amplitude oscillates back and forth between the two states at a frequency dictated by the coupling.

Resonance: To get transfer of probability amplitude you need the driving field to be at the same frequency as the energy splitting.

Note a result we will return to later: Electric fields couple states, creating coherences!

On resonance, you always drive probability amplitude entirely from one state to another.

Efficiency of driving between ℓ and k states drops off with detuning.

