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Supplement to Rate of Absorption and Stimulated Emission

Here are a couple of more detailed derivations:

Let’s look a little more carefully at the rate of absorption wy;, induced by an isotropic, broadband
light source

Wkt = I wi(@)pg(@)do

where, for a monochromatic light source

wi(0) = Z_ZQIEO (5012 k| & f>|2 5wy - )

For a broadband isotropic light source o(@)dw represents a number density of electromagnetic
modes in a frequency range dw —this is the number of standing electromagnetic waves in a unit
volume.

For one frequency we wrote:

but more generally:

where the sum is over the k¥ modes and j 1is the polarization component.

By summing over wave vectors for a box of fixed volume, the number density of modes in a
frequency range dw radiated into a solid angle dQQ is
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and we get pg by integrating over all
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We can now write the total transition rate between two discrete levels summed over all
frequencies, direction, polarizations
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We can write an energy density which is the number density in a range dw x # of polarization
components x energy density per mode.

& rate of energy flow/c
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B, = —| L, |2 is the Einstein B coefficient for the rate of absorption

U is the energy density and can also be written in a quantum form, by writing it in terms of the
number of photons N
2 3
E,; ho

Nhw=-<" U(mk[)=Nn2C3

The golden rule rate for absorption also gives the same rate for stimulated emission. We find for

two levels |m> and |n> :

Wam = Wimn
B, U(a)nm ): By U(a)nm) since U(a)nm) = U(wmn)
B, = By,

The absorption probability per unit time equals the stimulated emission probability per unit time.
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Version 2:
Let’s calculate the rate of transitions induced by an isotropic broadband source—we’ll do it a bit
differently this time. The units are cgs.

The power transported through a surface is given by the Poynting vector and depends on % .

co’Ay »  o’E;
4z 8n 27

and the energy density for this single mode wave is the time average of S/c.

The vector potential for a single mode is

i k~?—wt)

A= 4 ee + cc.

with @ =ck. More generally any wave can be expressed as a sum over Fourier components of the
wave vector:

The factor of ¥/ normalizes for the energy density of the wave—which depends on £ .

The interaction Hamiltonian for a single particle is:
V@)=—14-p
m
or for a collection of particles
_ 4% 5 -
V()=-2."-4-p;
i Mi

Now, the momentum depends on the position of particles, and we can express p in terms of an
integral over the distribution of particles:

p=[drp(r) p(r)=2p8(r-1)

So if we assume that all particles have the same mass and charge—say electrons:



V(t) = ‘;‘7 [ &40 -5(r)

The rate of transitions induced by a single mode is:
I

And the total transition rate for an isotropic broadband source is:
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We can replace the sum over modes for a fixed volume with an integral over & :

Jdkk2 dQ J-da)a)de
P (2 ) 2xy (27 C)’

So for the rate we have: dQ=sin 8dOdo

Idoa 27[ 0) cok/ IdQZ‘

can be written as k

The matrix element can be evaluated in a manner similar to before:

q 4 T
—L(k[e; p(r)| )= Z< (F7)1)
=%qzqé'<k\[?,Ho]5(7‘f)V>
= _i(")kf;zq S <k|f|£>
= —io,, (k|& ) where fi=3 q;;
For the field
_ By
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2 a) 2
w =[do=5 (@ a;)ﬂEo [aa |kl & ,u|€)|
a7 Qrey -
87[/3|,u,d,|2
for isotropic
6 h2 3|E0| |/uk/|

For a broadband source, the energy density of the light

U= { _ a)zEg
c 873

47z2 2

Wiy = By U(wyy) By :WW{A

We can also write the incident energy density in terms of the quantum energy per photon. For N
photons in a single mode:

ho?
Nho = kaNTS
T C

where B;, has molecular quantities and no dependence or field. Note B, = B, —ratio of S.E. =

absorption.

The ratio of absorption can be related to the absorption cross-section, o

P total energy absorbed/unit time

A7 1 total intensity (energy/unit time/area)

P=%w- Wk(( = h(DBk( U((’Ok/,)
I=cU(wy,)

G, = B,
C

or more generally, when you have a frequency-dependent absorption coefficient described by a
lineshape function g(w)

o, (0)= TBH g(w) units of cm’



