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Supplement to Rate of Absorption and Stimulated Emission 

Here are a couple of more detailed derivations: 

Let’s look a little more carefully at the rate of absorption wkA  induced by an isotropic, broadband 

light source 


wkA = ( )ρ E ω( )dω∫ wkA ω

where, for a monochromatic light source 

ˆ( ) = 
π ( )2 k ∈⋅µ A (2 δ ωkA −ω )E0 ωwkA ω

2=2 

For a broadband isotropic light source ρ(ω )dω  represents a number density of electromagnetic 
modes in a frequency range dω —this is the number of standing electromagnetic waves in a unit 
volume.   

For one frequency we wrote: 

A = A0 ∈ei(k ⋅r −ωtˆ ) + c.c. 

but more generally:   

ˆ i k  r  A = ∑A0k 
∈j e ( ⋅ −ω  t ) + c.c. 

k, j 

where the sum is over the k  modes and j  is the polarization component.   

By summing over wave vectors for a box of fixed volume, the number density of modes in a 
frequency range dω  radiated into a solid angle dΩ  is 

ω21 ddN = 3 3 dω Ω
(2π) c 

and we get ρE by integrating over all Ω 

ω2 

( )dω =  
1 ω2

dω∫dΩ =  dωE 3ρ ω  
(2π)3 c3 N 2π2 c 

4π 

number density at ω 
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We can now write the total transition rate between two discrete levels summed over all 
frequencies, direction, polarizations 

( kA 
ω2 22π ˆwkA = ∫dω  ω  δ  ω  − ω) 1 ∑∫dΩ  ∈ ⋅µ AkE0 ( )  j3 32=2 (2π) c j����	���
 

8π 2 µkA3 

2 
ω2 

2E0 (ωkA )= µkA6π=2 3c 

We can write an energy density which is the number density in a range dω × # of polarization 
components × energy density per mode.   

rate of energy flow/c2 

U (ωkA ) = 
ω2 

⋅ 2 ⋅ E0 

π2 3  

w 

2 c  8π


kA = BkA U (ωkA )


4π2

2 = µ is the Einstein B coefficient for the rate of absorption kABkA 3=2 

U  is the energy density and can also be written in a quantum form, by writing it in terms of the 
number of photons N 

2 = ω3 

N=ω =
E0 U (ωkA ) = N 2 38π π c 

The golden rule rate for absorption also gives the same rate for stimulated emission.  We find for 
two levels :m and  n  

=wnm wmn


Bnm U(ωnm )= Bnm U(ωnm ) since U (ωnm )= U(ωmn )


Bnm = Bmn


The absorption probability per unit time equals the stimulated emission probability per unit time.   
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Version 2: 

Let’s calculate the rate of transitions induced by an isotropic broadband source—we’ll do it a bit 
differently this time.  The units are cgs.   

The power transported through a surface is given by the Poynting vector and depends on k . 

2 2 

S = 
c E ×B = 

c ω2 A0 k̂ = ω2E0 

4π 8π 2π 

and the energy density for this single mode wave is the time average of S /  c . 

The vector potential for a single mode is 

A = A0 ∈ei(k ⋅r −ωtˆ ) + c.c. 

with ω = ck . More generally any wave can be expressed as a sum over Fourier components of the 
wave vector: 

i k  r  ( ⋅ −ω  t ) 
ˆA = ∑Ak j 
∈ 

e 
+ c.c.  j


k, j  V


The factor of 

The interaction Hamiltonian for a single particle is:   

V k . normalizes for the energy density of the wave—which depends on 

V t( ) = 
−q

A ⋅ ρ 
m 

or for a collection of particles 

V t( ) = − ∑ qi A ⋅ pi

i mi


Now, the momentum depends on the position of particles, and we can express p  in terms of an 
integral over the distribution of particles:   

3p = d  r  p  ( )  p (r ) = ∑p δ(r − r )∫ r i i

i


So if we assume that all particles have the same mass and charge—say electrons:   
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( ) = 
−q 

∫ d3r A r , t ( )V t ( ) ⋅ p r
m 

The rate of transitions induced by a single mode is:   

22 
A= 

2π
δ  ω  − ω) q2 

A rk ∈ ⋅  p ( )(wkA )k, j  V=2 ( kA 2 ˆ jk, jm 

And the total transition rate for an isotropic broadband source is:   

wkA = ∑(wkA )k, j 

k, j 


We can replace the sum over modes for a fixed volume with an integral over k : 

1 d3k dk k2 dΩ dω ω 2 dΩ
∑ ⇒ ∫ ( )3 → ∫ 2π 3 → ∫ (2π C)3
V k 2π ( )

So for the rate we have: dΩ = sinθ dθ dø 

2 2 2
ˆ r Aw kA = ∫dω

2π ω2 

δ  ω  − ω) q
2 ∫dΩ∑ k ∈⋅p ( )  A2 π 3 ( kA k, j= (2 c) m j 

can be written as k 

The matrix element can be evaluated in a manner similar to before:   

q −qk ∈ ⋅p  r  A = ∑ ˆ pk ∈⋅  δ( r ⋅ r ) Aˆ j ( )  i i m m i 

−i ˆ= q∑q ∈⋅ k [ r  ,  H0 ]δ( r − r ) A1 i = i 

i ˆ= − ω  kA ∑q ∈⋅ k Ar1 
i 

ˆi k ∈⋅µ A where µ = ∑q r = − ω  kA i i 
i 

For the field 
2 

E0
22 Ekij= ∑ =∑ Ak 4ω 2j 2i ωkij kij 
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ω 2 22 ˆWkA = ∫ dω 2π 
3 δ ω kA −ω)ωk

2 
A E0 ∫ dΩ∑ k ∈j ⋅µ A 

4=2 (2πc)
( 

ω 2 
j�� � � 	� � � 
 

2
8π / 3  µ kA 
f or is otro pic 

ω2 
2= µE0 kA36π=2c

For a broadband source, the energy density of the light 

2I ω 2E0U = = 
c 8π 3c3 

2WkA = BkA U ωkA( )  BkA = 4π
2

2 
µkA3=

We can also write the incident energy density in terms of the quantum energy per photon.  For N 
photons in a single mode:   

=ω 3 
N=ω = BkA N 3π 2c

where BkA  has molecular quantities and no dependence or field.  Note BkA = BAk —ratio of S.E. = 

absorption. 


The ratio of absorption can be related to the absorption cross-section, δA


P total energy absorbed/unit time 
σ =  =  A I total intensity (energy/unit time/area) 

P = ω⋅ WkA = ωBkA U (ωkA )= = 

=I cU  (ωkA )

=ω


σ =  BkAa c 

or more generally, when you have a frequency-dependent absorption coefficient described by a 
lineshape function g ω( ) 


a ( )  =ω

σ ω =  BkA g ( )  units of cm2ω 

c 


