Polyads, a, $\mathbf{a}^{\dagger}, \mathbf{N}$

Readings: \quad Chapter 9.4.4-9.4.9, The Spectra and Dynamics of Diatomic Molecules, H. Lefebvre-Brion and R. Field, $2^{\text {nd }}$ Ed., Academic Press, 2004.

Last time:
two level problem with complex $E_{j}^{(0)}$.
strong coupling limit $V^{2} \gg\left|\delta \varepsilon^{2}+\delta \Gamma^{2} / 4\right|$: if either $\delta \varepsilon=0$ or $\delta \Gamma=0$, the two quasi-eigenstates have the same width. Otherwise no major surprises.
weak coupling limit $V^{2} \ll\left|\delta \varepsilon^{2}-\delta \Gamma^{2} / 4\right|$: if $\delta \varepsilon=0$ we get no level repulsion and no level-width sharing. Big surprise!

Quantum beats between two decaying quasi-eigenstates. $\mathrm{I}(t)$ expressed in terms of 8 parameters $\left(\mathrm{I}_{+}\right.$, $\mathrm{I}_{-}, \Gamma_{+}, \Gamma_{-}, \mathrm{I}_{\mathrm{QB}}, \Gamma_{\mathrm{QB}}, \omega_{\mathrm{QB}}, \phi_{\mathrm{QB}}$) obtained from 6 dynamical parameters $\left(\delta \varepsilon, \delta \Gamma, \Gamma, V, \mathrm{I}_{\mathrm{A}}, \mathrm{I}_{\mathrm{B}}\right)$.

Today:
begin study of vibrational dynamics, leading eventually to replacement of the quantum mechanical
$\mathbf{H}^{\text {eff }}$ by a classical mechanical $\mathscr{H}^{\text {eff. }}$. Tricks to get $\langle\mathbf{A}\rangle$ without use of $\operatorname{Trace}(\mathbf{A} \boldsymbol{\rho}(t))$.

Polyatomic Molecule Vibration

$$
\begin{aligned}
& \Psi_{v_{1} v_{2} \ldots v_{3 N-6}}=\psi_{\mathbf{V}}=\prod_{j=1}^{3 N-6} \phi_{v_{j}} \quad \text { product basis set } \\
& \mathbf{H}=\underbrace{\sum_{j=1}^{3 N-6} \mathbf{h}_{j}}_{\mathbf{H}^{(0)}}+\text { coupling terms }
\end{aligned}
$$

$$
E^{(0)}=\sum_{j} h \omega_{j}\left(v_{j}+1 / 2\right) \text { (traditionally } \omega \text { is in } \mathrm{cm}^{-1} \text { units, } E=h c \omega(v+1 / 2) \text {, and } \omega \text { is not in }
$$ radians/s)

coupling terms have the form
$\sum_{i, j, k} k_{i j k} \mathbf{Q}_{i} \mathbf{Q}_{j} \mathbf{Q}_{k} \quad+\quad$ \{quartic $\} \quad+\quad\{$ quintic $\} \quad+\ldots$ cubic
most important
Enormous number of undeterminable anharmonic force constant terms.
matrix element scaling and selection rules
scaling

$$
\left\langle v_{j}+n\right| \mathbf{Q}_{j}^{a}\left|v_{j}\right\rangle=\left[\frac{\hbar}{2 \pi c \mu_{j} \omega_{j}}\right]^{a / 2}\left\{v_{j}^{a / 2}\right\} \quad\left(\text { and similarly for } \mathbf{P}_{j}^{a}\right)
$$

selection rule

$$
n=a, a-2, \ldots-a
$$

force constant

μ_{j} and ω_{j} must be generalized from single oscillator (diatomic molecule) form via a Wilson \mathbf{F}, \mathbf{G} matrix treatment, but there is always a mass factor analogous to μ_{j} and a frequency factor analogous to ω_{j}.

Polyads

Often, there are approximate integer multiple ratios between harmonic frequencies.

Fermi	$\omega_{1} \approx 2 \omega_{2}$	$1: 2$	$\frac{k_{122}}{2} \mathbf{Q}_{1} \mathbf{Q}_{2}^{2}$
Darling-Dennison	$\omega_{\text {sym }} \approx \omega_{\text {antisym }}$	$2: 2$	$k_{s s a a} \mathbf{Q}_{s}^{2} \mathbf{Q}_{a}^{2}$
3 modes	$\frac{k_{1,244}}{2}$	$\mathbf{Q}_{1} \mathbf{Q}_{2} \mathbf{Q}_{4}^{2}$	4
comma is used to separate modes that receive from			
those that donate			

large and increasing numbers of quasi-degenerate basis states all interacting increasingly strongly
e.g. Darling-Dennison

$$
\mathrm{P}=2 v_{\mathrm{sym}}+2 v_{\mathrm{anti}}
$$

Polyad: a small piece of state space in which dynamics is

$$
\begin{array}{ll}
\text { * } & \text { fast } \\
\text { * } & \text { predictable } \\
\text { * } & \text { scalable } \\
\text { * } & \text { visualizable }
\end{array}
$$

We need an algebra that will make all of this more transparent.

$$
\mathbf{a}, \mathbf{a}^{\dagger}, \mathbf{N}
$$

Eventually we will find that we can use this algebra to go from Quantum Mechanical $\mathbf{H}^{\text {eff }}$ to Classical Mechanical $\mathscr{H}^{\text {fff }}$.

Dimensionless Operators

$$
\begin{aligned}
& \hat{\mathbf{Q}}=\left[\frac{2 \pi c \mu \omega}{\hbar}\right]^{1 / 2} \mathbf{Q} \quad \omega\left[\text { in } \mathrm{cm}^{-1}\right]=\frac{1}{2 \pi c}[k / \mu]^{1 / 2} \\
& \hat{\mathbf{P}}=[\hbar 2 \pi c \omega]^{-1 / 2} \mathbf{P} \\
& \hat{\mathbf{H}}^{(0)}=\left[\frac{1}{2 \pi \hbar c \omega}\right] \mathbf{H}^{(0)}=\frac{1}{2}\left[\hat{\mathbf{Q}}^{2}+\hat{\mathbf{P}}^{2}\right] \\
& \text { displays the equivalence of } \hat{\mathbf{Q}}^{2} \text { and } \hat{\mathbf{P}}^{2} .
\end{aligned}
$$

matrix elements of $\hat{\mathbf{Q}}, \hat{\mathbf{P}}$, and $\hat{\mathbf{H}}^{(0)}$ are simple functions of integers.

But it is more useful to express $\hat{\mathbf{Q}}$ and $\hat{\mathbf{P}}$ in terms of something even more fundamental: a, a ${ }^{\dagger}, \mathbf{N}$

$$
\begin{aligned}
\mathbf{a}^{\dagger} & =2^{-1 / 2}[\hat{\mathbf{Q}}-i \hat{\mathbf{P}}] \\
\mathbf{a} & =2^{-1 / 2}[\hat{\mathbf{Q}}+i \hat{\mathbf{P}}] \\
\hat{\mathbf{Q}} & =2^{-1 / 2}\left[\mathbf{a}^{\dagger}+\mathbf{a}\right] \\
\hat{\mathbf{P}} & =2^{-1 / 2} i\left[\mathbf{a}^{\dagger}-\mathbf{a}\right] \\
\mathbf{N} & =\mathbf{a}^{\dagger} \mathbf{a}
\end{aligned}
$$

$$
\langle v+1| \mathbf{a}^{\dagger}|v\rangle=[v+1]^{1 / 2}
$$

$$
\langle v| \mathbf{a}|v+1\rangle=[v+1]^{1 / 2}
$$

$$
\langle v| \mathbf{N}|v\rangle=\langle v| \mathbf{a}^{\dagger} \mathbf{a}|v\rangle=v
$$

$$
\mathbf{H}^{(0)}=\sum_{j=1}^{3 N-6} \hbar 2 \pi c \omega_{j}\left(\mathbf{a}_{j}^{\dagger} \mathbf{a}_{j}+1 / 2\right) \quad \text { OR } \quad\left(\mathbf{a}_{j}^{\dagger} \mathbf{a}_{j}+\mathbf{a}_{j} \mathbf{a}_{j}^{\dagger}\right)
$$

$\mathbf{H}^{(1)}=$ anharmonic coupling terms, e. g.

$$
k_{i \ldots i j \ldots j} \mathbf{Q}_{i}^{n} \mathbf{Q}_{j}^{m}=k_{i \ldots i j \ldots j}\left(2^{-1 / 2}\right)^{n+m}\left[\mathbf{a}_{i}^{\dagger}+\mathbf{a}_{i}\right]^{n}\left[\mathbf{a}_{j}^{\dagger}+\mathbf{a}_{j}\right]^{m}
$$

Commutation rules

$$
\begin{array}{r}
{\left[\mathbf{a}_{i}, \mathbf{a}_{i}^{\dagger}\right]=1} \\
{\left[\mathbf{a}_{i}, \mathbf{a}_{j}\right]=\left[\mathbf{a}_{i}, \mathbf{a}_{j}^{\dagger}\right]=0}
\end{array}
$$

Setting up an $\mathbf{H}^{\text {eff }}-$ We have two choices:
1st choice

$$
\begin{aligned}
\mathbf{H}^{(0)} & =\sum_{j} \hbar 2 \pi c \omega_{j}\left(\mathbf{a}_{j}^{\dagger} \mathbf{a}_{j}+1 / 2\right) \\
\mathbf{H}^{(1)} & =V(\mathbf{Q})-\underbrace{\sum_{j}\left(k_{j} / 2\right) \frac{1}{2}\left(\mathbf{a}_{j}+\mathbf{a}_{j}^{\dagger}\right)^{2}}_{\text {already included in } \mathbf{H}^{(0)}}
\end{aligned}
$$

Possibly use hybrid perturbation theory and DVR methods to evaluate matrix elements of $V(\mathbf{Q})$.

2nd choice

$$
\begin{aligned}
\mathbf{H}^{(0)} & =\sum_{j} \hbar 2 \pi c \omega_{j}\left(\mathbf{a}_{j}^{\dagger} \mathbf{a}_{j}+1 / 2\right) \\
& +\sum_{j \leq k} x_{j k}\left(\mathbf{a}_{j}^{\dagger} \mathbf{a}_{j}+1 / 2\right)\left(\mathbf{a}_{k}^{\dagger} \mathbf{a}_{k}+1 / 2\right) \\
& +\sum_{j, k, \ell} y_{j k \ell}\left(\mathbf{a}_{j}^{\dagger} \mathbf{a}_{j}+1 / 2\right)\left(\mathbf{a}_{k}^{\dagger} \mathbf{a}_{k}+1 / 2\right)\left(\mathbf{a}_{\ell}^{\dagger} \mathbf{a}_{\ell}+1 / 2\right)
\end{aligned}
$$

[terms from a Dunham expansion converted to $\mathbf{a}^{\dagger}, \mathbf{a}$ form]
$\mathbf{H}^{(1)}=$ specific anharmonic resonance terms that require diagonalization of a polyad block
e.g. $\quad \frac{1}{4} k_{s s a a} \mathbf{Q}_{s}^{2} \mathbf{Q}_{a}^{2}=\frac{1}{16} k_{s s a a}\left(\mathbf{a}_{s}^{\dagger}+\mathbf{a}_{s}\right)^{2}\left(\mathbf{a}_{a}^{\dagger}+\mathbf{a}_{a}\right)^{2}$

The second choice is vastly preferable because:

1. it is in the form of a traditional fit model;
2. it does not require diagonalization of the full \mathbf{H} because $\mathbf{H}^{(1)}$ is block diagonalized into polyads (actually need to perform a Van Vleck transformation to fold out-ofpolyad matrix elements of the selected anharmonic resonances into the quasidegenerate polyad blocks);
3. it does not require extensive use of non-degeneragte perturbation theory to convert anharmonic terms in $V(\mathbf{Q})\left(k^{\prime} s\right)$ into anharmonic terms in $E(\mathbf{V})\left(x^{\prime} \mathrm{s}\right)[x-k$ relationships: Ian Mills].
matrix elements of

$$
\begin{aligned}
& \frac{1}{2} k_{1,22} \mathbf{Q}_{1} \mathbf{Q}_{2}^{2}=\frac{1}{2} 2^{-3 / 2}\left[\frac{\hbar}{2 \pi c \mu_{1} \omega_{1}}\right]^{1 / 2}\left[\frac{\hbar}{2 \pi c \mu_{2} \omega_{2}}\right] k_{1,22}\left(\mathbf{a}_{1}^{\dagger}+\mathbf{a}_{1}\right)\left(\mathbf{a}_{2}^{\dagger}+\mathbf{a}_{2}\right)^{2} \\
& \mathbf{H}_{v_{1}, v_{2} ; v_{1}-1, v_{2}+2} / h c=k_{1,22}^{\prime}\left\langle v_{1} v_{2} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}^{2} v_{1}-1, v_{2}+2\right\rangle \\
& k_{1,22}^{\prime}={ }_{2}^{1} 2^{-3 / 2}\left[\begin{array}{c}
\hbar \\
2 \pi c \mu_{1} \omega_{1}
\end{array}\right]^{1 / 2}\left[\begin{array}{c}
\hbar \\
2 \pi c \mu_{2} \omega_{2}
\end{array}\right]^{1 / 2}{ }_{h c} k_{1,22} \\
& \left\langle v_{1} v_{2}\right| \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}^{2}\left|v_{1}-1, v_{2}+2\right\rangle=\left[\left(v_{2}+2\right)\left(v_{2}+1\right)\left(v_{1}\right)\right]^{1 / 2} \\
& \mathbf{H}_{v_{1}, v_{2} ; v_{1}+1, v_{2}-2} / h c=k_{1,22}^{\prime}\left\langle v_{1} v_{2}\right| \mathbf{a}_{1} \mathbf{a}_{2}^{\dagger 2}\left|v_{1}+1, v_{2}-2\right\rangle \\
& \quad=k_{1,22}^{\prime}\left[\left(v_{1}+1\right)\left(v_{2}\right)\left(v_{2}-1\right)\right]^{1 / 2} .
\end{aligned}
$$

Suppose we have a polyad involving three vibrational normal modes connected by two anharmonic resonances (we are going to use this model for several lectures).
$\omega_{1} \approx \omega_{3} \approx 2 \omega_{2}$
ω_{1} is symmetric stretch: totally symmetric
ω_{3} is antisymmetric stretch: anti-symmetric (need even number of quanta to be totally symmetric)
ω_{2} is bend:
totally symmetric
(a further level of complexity could be a doubly degenerate bending mode)

Resonance \#1

$$
\frac{1}{4} k_{1133} \mathbf{Q}_{1}^{2} \mathbf{Q}_{3}^{2}=k_{11,33}^{\prime}\left(\mathbf{a}_{1}+\mathbf{a}_{1}^{\dagger}\right)^{2}\left(\mathbf{a}_{3}+\mathbf{a}_{3}^{\dagger}\right)^{2}
$$

Resonance \#2

$$
\begin{aligned}
& 1 k_{122} \mathbf{Q}_{1} \mathbf{Q}_{2}^{2}=k_{1,22}^{\prime}\left(\mathbf{a}_{1}+\mathbf{a}_{1}^{\dagger}\right)\left(\mathbf{a}_{2}+\mathbf{a}_{2}^{\dagger}\right)^{2} \\
& k_{11,33}^{\prime}=\frac{1}{4} k_{1133} \frac{1}{4}\left(\frac{\hbar}{2 \pi c \mu_{1} \omega_{1}}\right)\left(\frac{\hbar}{2 \pi c \mu_{3} \omega_{3}}\right) \frac{1}{h c} \\
& k_{1,22}=\frac{1}{2} k_{122} 2^{-3 / 2}\left(\frac{\hbar}{2 \pi c \mu_{1} \omega_{1}}\right)^{1 / 2}\left(\frac{\hbar}{2 \pi c \mu_{2} \omega_{2}}\right) \frac{1}{h c}
\end{aligned}
$$

Polyad number is $\mathrm{P}=2 v_{1}+2 v_{3}+v_{2}$. There are connected manifolds of resonances.

$$
\begin{array}{ccc}
(0,2 n, 0) & & \\
\\
\vdots & (0,2 n-4,2) & \\
\vdots & \vdots & (0,2 n-8,4) \\
\vdots & \vdots & \vdots \\
\\
\vdots & \vdots & \vdots \\
\\
(n-2,4,0) & (n-4,4,2) & (n-6,4,4) \\
(n-1,2,0) & (n-3,2,2) & (n-5,2,4) \\
(n, 0,0) & (n-2,0,2) & (n-4,0,4)
\end{array} \cdots \quad(0,0, n)
$$

Number of states in polyad:

N \# states

0	1	$(0,0,0)$
1	1	$(0,1,0)$
2	2	$(1,0,0),(0,2,0)$
3	2	$(1,1,0)(0,3,0)$
4	4	$(2,0,0),(1,2,0),(0,4,0),(0,0,2)$

... ...
1216

2449

The polyad conserving resonance operators are
$\mathbf{\Omega}_{1}=k_{11,33}^{\prime} \mathbf{a}_{1}^{2} \mathbf{a}_{3}^{\dagger 2}$
$\Delta v_{1}=-2, \Delta v_{3}=+2$
$\mathbf{\Omega}_{1}^{\dagger}=k_{11,33}^{\prime} \mathbf{a}_{1}^{\dagger 2} \mathbf{a}_{3}^{\dagger 2}$
$\Delta v_{1}=+2, \Delta v_{3}=-2$
$\mathbf{\Omega}_{2}=k_{1,22}^{\prime} \mathbf{a}_{1} \mathbf{a}_{2}^{\dagger 2}$
$\Delta v_{1}=-1, \Delta v_{2}=+2$
$\mathbf{\Omega}_{2}^{\dagger}=k_{1,22}^{\prime} \mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}^{2}$
$\Delta v_{1}=+1, \Delta v_{2}=-2$

You know how to set up the matrices for each polyad

$$
\begin{aligned}
\mathbf{H} / h c= & \left\{\omega_{1}\left(\mathbf{N}_{1}+1 / 2\right)+\omega_{2}\left(\mathbf{N}_{2}+1 / 2\right)+\omega_{3}\left(\mathbf{N}_{3}+1 / 2\right)\right. \\
& +x_{11}\left(\mathbf{N}_{1}+1 / 2\right)^{2}+x_{22}\left(\mathbf{N}_{2}+1 / 2\right)^{2}+x_{33}\left(\mathbf{N}_{3}+1 / 2\right)^{2} \\
& \left.+x_{12}\left(\mathbf{N}_{1}+1 / 2\right)\left(\mathbf{N}_{2}+1 / 2\right)+x_{13}\left(\mathbf{N}_{1}+1 / 2\right)\left(\mathbf{N}_{3}+1 / 2\right)+x_{23}\left(\mathbf{N}_{2}+1 / 2\right)\left(\mathbf{N}_{3}+1 / 2\right)\right\} \\
& +\left[\mathbf{\Omega}_{1}+\mathbf{\Omega}_{1}^{\dagger}+\mathbf{\Omega}_{2}+\mathbf{\Omega}_{2}^{\dagger}\right] \\
& \} \text { diagonal } \\
& {[\text {] non - diagonal }}
\end{aligned}
$$

We are now equipped to look at dynamics in state space (intrapolyad dynamics), dynamics in \mathbf{Q}, \mathbf{P} space (interpolyad dynamics), and dynamics of the resonance and transfer rate operators. Next time. Also final exam.

