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11.1 VIBRATIONAL RELAXATION* 

Here we want to address how a quantum mechanical vibration undergoes irreversible energy 

dissipation as a result of interactions with other intra- and intermolecular degrees of freedom. 

Why is this process important? It is the fundamental process by which non-equilibrium states 

thermalize. As chemists, this plays a particularly important role in chemical reactions, where 

efficient vibrational relaxation of an activated species is 

important to stabilizing the product and not allowing it to re-

cross to the reactant well. We will be looking specifically at 

vibrational couplings and relaxation, but the principles are the 

same for spin-lattice relaxation and electronic population 

relaxation through electron-phonon coupling. 

For an isolated molecule with few vibrational coordinates, an excited vibrational state 

must relax by interacting with the remaining internal vibrations or the rotational and translational 

degrees of freedom. If a lot of energy must be dissipated, radiative relaxation may be more 

likely. In the condensed phase, relaxation is usually mediated by the interactions with the 

environment, for instance, the solvent or lattice. The solvent or lattice forms a continuum of 

intermolecular motions that can absorb the energy of the vibrational relaxation. Quantum 

mechanically this means that vibrational relaxation (the annihilation of a vibrational quantum) 

leads to excitation of solvent or lattice motion (creation of an intermolecular vibration that 

increases the occupation of higher lying states). 

For polyatomic molecules it is common to think 

of energy relaxation from high lying vibrational states 

( kT << hω0 ) in terms of cascaded redistribution of 

energy through coupled modes of the molecule and its 

surroundings leading finally to thermal equilibrium. 

We seek ways of describing these highly non-

equilibrium relaxation processes in quantum systems.  
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Classically vibrational relaxation reflects the surroundings exerting a friction on the 

vibrational coordinate which damps its amplitude and heats the sample. We have seen that a 

Langevin equation for an oscillator experiencing a fluctuating force f(t) describes such a process: 

Q t( ) +ω0 Q −γQ f t( )&& 2 2 & = / m (12.1) 

This equation ascribes a phenomenological damping rate γ to the vibrational relaxation; however, 

we also know in the long time limit, the system must thermalize and the dissipation of energy is 

related to the fluctuations of the environment through the classical fluctuation-dissipation 

relationship: 

( ) (0)f t f  2 γ T δ (t ) (12.2)= m k

We would also like to understand the correspondence between these classical pictures and 

quantum relaxation. 

Let’s treat the problem of a vibrational system HS that relaxes through weak coupling V 

to a continuum of bath states HB using perturbation theory. The eigenstates of HS are a  and 

those of HB are α . Although our earlier perturbative treatment didn’t satisfy energy 

conservation, here we can take care of it by explicitly treating the bath states. 

H H  +  (11.1)= 0

H0 = HS + HB (11.2) 

HS = a E a + b E b (11.3)a b 

HB =∑ α Eα α (11.4) 
α 

H aα = (E E )+ aα (11.5)0 a α 

We will describe transitions from an initial state i = aα with energy E E  to a final statea + α

f = bβ with energy E E . Since we expect energy conservation to hold, this undoubtedlyb + β 

requires that a change in the system states will 

require an equal and opposite change of energy in 

the bath. Initially, we take pa =1 pb = 0 . If the 

interaction potential is V , Fermi’s Golden Rule says 

the transition from i to f  is given by 

V
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2
k fi = 

2π ∑ pi i V f δ (E − E ) (11.6)f i 
,h i f  

2
a Vα bβ δ (( Eb + Eβ ) − ( Ea + Eα )) (11.7)= 

2π ∑ pa,α
h a, ,α b,β


1 +∞
 −i E  −E + E −E t h(( b a ) ( β α ))= 
h2 ∫−∞ 

dt∑ pa,α aα V bβ bβ V aα e (11.8) 
a,α 
b,β 

Equation (11.8) is just a restatement of the time domain version of (11.6) 

1 +∞
k fi = 

h2 ∫−∞ 
dt V  t V  0 (11.9)( )  ( )  

0 0V t( ) = eiH t V e−iH t . (11.10) 

Now, the matrix element involves both evaluation in both the system and bath states, but if we 

write this in terms of a matrix element in the system coordinate Vab = a V  b  : 

a Vα bβ = α Vab β (11.11) 

Then we can write the rate as 
+∞ 

e V e −iE t +iE t α βkba = 
1

2 ∫−∞ 
dt  ∑ pα α β β Vba α e−iωbat (11.12)ab

h α β 


1 +∞


, 

e−iωbatkba = 2 ∫−∞ 
dt V  ab t V  0( )  ba ( )  

Bh

 (11.13) 

ab ( )  iH t 
ab 

−iH t V t  = e B V e B (11.14) 

Equation (11.13) says that the relaxation rate is determined by a correlation function  

C t  = Vab t  V  ba (11.15) 

which describes the time-dependent changes to the coupling between b and a. The time-

dependence of the interaction arises from the interaction with the bath; hence its time-evolution 

under HB . The subscript L

ba ( ) ( ) (0) 

 means an equilibrium thermal average over the bath states 
B 

L =∑ pα α L α . (11.16)
B 

α 

Note also that eq. (11.13) is similar but not quite a Fourier transform. This expression 

says that the relaxation rate is given by the Fourier transform of the correlation function for the 

fluctuating coupling evaluated at the energy gap between the initial and final state states. 
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Alternatively we could think of the rate in terms of a vibrational coupling spectral density, and 

the rate is given by its magnitude at the system energy gap ωba . 

kba = 
1

2 C% ba (ωab ) . (11.17)
h 

where the spectral representation C% ba (ωab )  is defined as the Fourier transform of ba ( ) .C t  

Vibration coupled to a harmonic bath 
To evaluate these expressions, let’s begin by consider the specific case of a system vibration 

coupled to a harmonic bath, which we will describe by a spectral density. Imagine that we 

prepare the system in an excited vibrational state in v = 1 and we want to describe relaxation 

1to v = 0 . 

2 2H = hω (P +Q ) (11.18)S 0 α% %
2 2 †H = hω p + q = hω a a  + 1 (11.19)B ∑ α ( α α ) ∑ α ( α α  2 ) 

α % % α 

We will take the system-bath interaction to be linear in the system and bath coordinates:   

V HSB = ξα q Q . (11.20)= ∑ α 
α % %  

Here ξ is a coupling constant that describes the strength of the interaction 

between system and bath mode α. Note, that this bilinear coupling form 

suggests that the system vibration is a local mode interacting with a set of 

normal vibrations of the bath.  In principle, this form of the coupling can 

be diagonalized to obtain a complete set of normal modes in which the 

system vibration is mixed slightly into each of the bath modes. 

For the case of single quantum relaxation from , we can write the 

coupling matrix element as 

a = 1 to b = 0 

†Vba =∑ξα (aα + aα ) (11.21) 
α 

Evaluating eq. (11.15) is now much the same as problems we’ve had previously:   
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eiHBt Vab e
−iH Bt VbaV t V  0 =( )  ( )  ab ba B B 

α ωα=∑ξα 
2 ⎡⎣(nα +1)e−i tω + nα e+i t  ⎤⎦ 

(11.22) 

α


h α
here nα = (eβ ω −1)−1 
 is the thermally averaged occupation number of the bath mode at ωα. In 

evaluating this we take advantage of relationships we have used before 
iH t −iH t ω−i te B aα e B = aαe α 

(11.23)
iH t −iH t +i te B aα 

† e B = aα 
† e ωα 

†a a  = nα +1α α  
(11.24)

†a a  = nαα α  

So, now by Fourier transforming (11.22) we have the rate as 

1 [ ]2 ( ) (  ) ( )kba = 2 ∑ ξα ab ⎣⎡ nα +1 δ ω  ba +ωα + nαδ ω  ba −ωα ⎦⎤ (11.25)
h α 

This expression describes two relaxation processes which depend on temperature.  The first is 

allowed at T = 0 K and is obeys −ωba =ωα . This implies that Ea > Eb , and that a loss of energy 

in the system is balanced by an equal rises in energy of the bath.  The second term is only 

allowed for elevated temperatures. It describes relaxation of the system by transfer to a higher 

energy state Eb > Ea , with a concerted decrease of the energy of the bath. Naturally, this process 

vanishes if there is no thermal energy in the bath.2 

To more accurately model the relaxation due to a continuum of modes, we can replace 

the explicit sum over bath states with an integral over a density of bath states W 

1 2k = 2 ∫ dω W (  )  (  ) ⎡⎣(n (  )  + )δ ω  ( +ω + n ω  δ ω  −ω )⎤⎦ω ξ ω  ω  1 ) ( ) (  (11.26)ba α α ba α α ba α α ba α
h
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We can also define a spectral density, which is the vibrational coupling-weighted density of 

states: 
2ρ (ωα ) ≡W (ωα )ξba (ωα ) (11.27) 

Then the relaxation rate is: 

1 2kba = 2 ∫ dωαW (ωα )ξba (ωα ) ⎣⎡(n (ωα ) +1)δ  ω  ( ba +ωα ) + n (ωα )  (  δ  ω  ba −ωα )⎦⎤ h (11.28) 
= 

1
2 
⎡⎣(n (ωba ) +1) ρba (ωab ) + n (ωba ) ρba (−ωab )⎤⎦h

We see that the Fourier transform of the fluctuating coupling correlation function, is equivalent 

to the coupling-weighted density of states, which we evaluate atωba  or −ωba depending on 

whether we are looking at upward or downward transitions.  This is a full quantum expression, 

and obeys detailed balance between the upward and downward rates of transition between two 

states: 

kba = exp (− h ) kab . (11.29)β ωab 

From our description of the two level system in a harmonic bath, we see that high 

frequency relaxation ( kT << hω0 ) only proceeds with energy from the system going into a mode 

of the bath at the same frequency, but at lower frequencies ( kT ≈ hω0 ) that energy can flow both 

into the bath and from the bath back into the system.  When the vibration has energies that are 

thermally populated in the bath, we return to the classical picture of a vibration in a fluctuating 

environment that can dissipate energy from the vibration as well as giving kicks that increase the 

energy of the vibration. Note that in a cascaded relaxation scheme, as one approaches kT, the 

fraction of transitions that increase the system energy increase. Also, note that the bi-linear 

coupling in eq. (11.20) and used in our treatment of quantum fluctuations can be associated with 

fluctuations of the bath that induce changes in energy (relaxation) and shifts of frequency 

(dephasing). 
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Multiquantum relaxation of polyatomic molecules3 

Vibrational relaxation of polyatomic molecules in solids or in solution involves anharmonic 

coupling of energy between internal vibrations of the molecule, also called IVR (internal 

vibrational energy redistribution). Mechanical interactions between multiple modes of vibration 

of the molecule act to rapidly scramble energy deposited into one vibrational coordinate and lead 

to cascaded energy flow toward equilibrium. 

For this problem the bilinear coupling above doesn’t capture the proper relaxation 

process. Instead we can express the molecular potential energy in terms of well defined normal 

modes of vibration for the system and the bath, and these interact weakly through small 

anharmonic terms in the potential. Then we can extend the perturbative approach above to 

include the effect of multiple accepting vibrations of the system or bath. For a set of system and 

bath coordinates, the potential energy for the system and system-bath interaction can be 

expanded as 

V +V = 
1 ∂2V Q2 +

1 ∂3V Q q q  + 1 ∂3V Q Q q  L  (11.30)S  SB  ∑ 2 a 6 ∑ ∂  ∂ ∂  qβ 
a α β  

a b  
∑ 

,α ∂  ∂  ∂  b 
a b α2 a ∂Qa a, ,α β  Qa qα 6 , Qa Q qα 

Focussing explicitly on the first cubic expansion term, for one system oscillator: 

3VS +VSB  = 
1 mΩ2Q2 +V ( )Qq  qα β (11.31)
2 %  % %  %

Here, the system-bath interaction potential describes the case for a cubic anharmonic coupling 

that involves one vibration of the system Q interacting weakly with two vibrations of the bath qα 
%

and qβ , so that hΩ >>V (3) . Energy deposited in the system vibration will dissipate to the two 
%

vibrations of the bath, a three quantum process. Higher-order expansion terms would describe 

interactions involving four or more quanta.  

Working specifically with the cubic example, we can use the harmonic bath model to 

calculate the rate of energy relaxation. This picture is applicable if a vibrational mode of 

frequency Ω relaxes by transferring its energy to another vibration nearby in energy ( ωα ), and 

the energy difference ωβ  being accounted for by a continuum of intermolecular motions.  For 

this case one can show 

kba = 
h

1
2 
⎡
⎣(n (  )  α +1)(n (  )  ωβ +1) ρba (ωab ) + (n (  )  ωα +1)n (  )  ω  ρ  β ba (ωab )⎤⎦ω (11.32) 
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where ρ ω ≡W ( ) V ( ) ( )
2 
. Here we have taken Ω ω >>ω( )  ω ( 3 ω ) , α β . These two terms describe 

two possible relaxation pathways, the first in which annihilation of a quantum of Ω leads to a 

creation of one quantum each of ωα and ωβ . The second term describes the dissipation of 

energy by coupling to a higher energy 

vibration, with the excess energy being 

absorbed from the bath.  Annihilation of 

a quantum of Ω leads to a creation of one 

quantum of ωα and the annihilation of 

one quantum of ωβ . Naturally this latter 

term is only allowed when there is 

adequate thermal energy present in the 

bath. 

Rate calculations using classical vibrational relaxation 
In general, we would like a practical way to calculate relaxation rates, and calculating quantum 

correlation functions isn’t practical. How do we use classical calculations for the bath, for 

instance drawing on a classical molecular dynamics simulation?  Is there a way to get a quantum 

mechanical rate? 

*The first problem is that the quantum correlation function is complex C t( ) = C (−t )ab ab 

and the classical correlation function is real and even C t( ) = C (−t ) . In order to connectCl Cl 

these two correlation functions, one can derive a quantum correction factor that allows one to 

predict the quantum correlation function on the basis of the classical one. This is based on the 

assumption that at high temperature it should be possible to substitute the classical correlation 

function with the real part of the quantum correlation function  

C t( ) ⇒ C′ (t ) (11.33)Cl ba 

To make this adjustment we start with the frequency domain expression derived from the 
hdetailed balance expression C% (  )  = e−β ωC% ω−ω ( ) 

% %C ( )ω =
+ ( 

2 
−β ω)

C′( )ω (11.34)
1 exp  h
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% ′ ωHere C ( ) is defined as the Fourier transform of the real part of the quantum correlation 

function. So the vibrational relaxation rate is 

4 ∞
kba = 2 (1 exp  (−hωba )) ∫ dt  e  −iωbat Re ⎡⎣ Vab ( )t  V  ba ( )  0 ⎤ (11.35)⎦h + kT 0 

Now we will assume that one can replace a classical calculation of the correlation function here 

as in eq. (11.33).  The leading term out front can be considered a “quantum correction factor” 

that accounts for the detailed balance of rates encoded in the quantum spectral density. 

In practice such a calculation might be done with molecular dynamics simulations. Here 

one has an explicit characterization of the intermolecular forces that would act to damp the 

excited vibrational mode. One can calculate the system-bath interactions by expanding the 

vibrational potential of the system in the bath coordinates   

VS +VSB  =V0 +∑ ∂V α 

Q +∑ ∂2V α 

Q2 +L 
α ∂Q α ∂Q2 (11.36) 

=V0 + FQ  +GQ  2 +L

Here V α  represents the potential of an interaction of one solvent coordinate acting on the excited 

vibrational system coordinate Q . The second term in this expansion FQ  depends linearly on the 

system Q  and bath α  coordinates, and we can use variation in this parameter to calculate the 

correlation function for the fluctuating interaction potential. Note that F  is the force that 

molecules exert on Q! Thus the relevant classical correlation function for vibrational relaxation 

is a force correlation function 
C t  F  (t )F (0) (11.37)Cl ( ) =

1 ∞
kCl = 

kT ∫0 
dt  cos ωbat F ( )  ( )  t F 0 . (11.38) 
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Readings and Notes 

* Oxtoby, D. W. Vibrational population relaxion in liquids. Adv. Chem. Phys. 47, 487 (1981); 
Skinner, J. L. Semiclassical approximations to golden rule rate constants. J.Chem.Phys.107, 
8717 (1997); Egorov, S. A., Rabani, E. & Berne, B. J. Nonradiative relaxation processes in 
condensed phases: Quantum versus classical baths. J. Chem. Phys.110, 5238 (1999). 

1	 Note that we are using an equilibrium property, the coupling correlation function, to describe a 
non-equilibrium process, the relaxation of an excited state. Underlying the validity of the 
expressions are the principles of linear response. In practice this also implies a time-scale 
separation between the equilibration of the bath and the relaxation of the system state: The bath 
correlation function should work fine if it has rapidly equilibrated, even though the system may 
not have. An instance where this would work well is electronic spectroscopy, where relaxation 
and thermalization in the excited state occurs on picosecond time scales, whereas the electronic 
population relaxation is on nanosecond time scales. 

2	 There is an exact analogy between this problem and the interaction of matter with a quantum 
radiation field. The interaction potential is instead a quantum vector potential and the bath is 
the photon field of different electromagnetic modes. Equation (11.25) describes has two terms 
that describe emission and absorption processes. The leading term describes the possibility of 
spontaneous emission, where a material system can relax in the absence of light by emitting a 
photon at the same frequency.   

3	 V. M. Kenkre, A. Tokmakoff and M. D. Fayer, “Theory of vibrational relaxation of polyatomic 
molecules in liquids,”J. Chem. Phys., 101, 10618 (1994). 




