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5.74 TIME-DEPENDENT QUANTUM MECHANICS 

1. INTRODUCTION 

1.1. Time-evolution for time-independent Hamiltonians 

The time evolution of the state of a quantum system is described by the time-dependent 

Schrödinger equation (TDSE): 

   
i!

!

!t
" r , t( ) = Ĥ" r , t( ) (1.1)


  Ĥ is the Hamiltonian operator which describes all interactions between particles and fields, and 

is the sum of the kinetic and potential energy. For one particle 

   
Ĥ = !

!
2

2m
"

2
+V r ,t( ) (1.2)


The state of the system is expressed through the wavefunction 
  
! r , t( ) . The wavefunction is 

complex and cannot be observed itself, but through it we obtain the probability density 

  
P = ! *

r , t( )" ! r , t( )dr = ! r , t( )! r , t( ) (1.3)


which characterizes the probability that the particle described by   Ĥ is between  r and 
 
dr at 

time t. 

Most of what you have previously covered is time-independent quantum mechanics, 

where we mean that the Hamiltonian   Ĥ is assumed to be independent of time: 
  
Ĥ = Ĥ r( ) . We 

then assume a solution with a form in which the spatial and temporal variables in the 

wavefunction are separable: 

  
! r , t( ) = " r( )T t( )

   

i!
1

T t( )
!

!t
T t( ) =

Ĥ r( )" r( )
" r( )

(1.4)


(1.5)
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Here the left-hand side is a function only of time (t), and the right-hand side is a function of 

space only (  r , or rather position and momentum). Equation (1.5) can only be satisfied if both 

sides are equal to the same constant,  E . Taking the right hand side we have 

  

Ĥ r( )! r( )
! r( )

= E " Ĥ r( )! r( ) = E! r( ) (1.6) 

This is our beloved Time-Independent Schrödinger Equation (TISE). The TISE is an eigenvalue 

equation, for which 
 
! r( ) are 

that 
  

Ĥ = ! Ĥ ! = E , so   Ĥ

mechanics we associate 
  

Ĥ

the eigenstates and E is the eigenvalue. Here we note 

is the operator corresponding to E and drawing on classical 

with the expectation value of the energy of the system. Now taking 

the left hand side of (1.5): 

   

i!
1

T t( )
!T

!t
= E "

!
!t

+
iE

!

#
$%

&
'(

T t( ) = 0

   
T t( ) = T

0
exp !iEt / !( ) = T

0
exp !i"t( )

(1.7)


(1.8)


So, in the case of a bound potential we will have a discrete set of eigenfunctions 
 
!

n
r( ) with 

corresponding energy eigenvalues 
 
E

n
from the TISE, and there are a set of corresponding 

solutions to the TDSE. 

  
!

n
r , t( ) = c

n
"

n
r( ) exp #i$

n
t( ) (1.9)


where 
   
!

n
= E

n
/ ! and 

 
c

n
is a (complex) amplitude. The n eigenfunctions form an orthonormal 

set, so that 
  

c
nn

!
2

= 1. Since the only time-dependence is a phase factor, the probability density 

(1.3) is independent of time for the eigenfunctions 
  
!

n
r , t( ) . Therefore, the eigenstates 

 
! r( ) do 

not change with time and are called stationary states.


However, more generally, a system may exist as a linear combination of eigenstates:
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! r , t( ) = c
n
!

n

n

" r , t( ) = c
n
e
# i$

n
t

%
n

r( )
n

" (1.10)


where 
 
c

n
are (complex) amplitudes. For such a case, the probability density will oscillate with 

time. As an example, consider two eigenstates 

  
! r , t( ) =! 1

+!
2
= c

1
"

1
e
# i$1t

+ c
2
"

2
e
# i$2t

For this state the probability density oscillates in time as 
  
cos !

2
"!

1
( )t : 

(1.11)
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!

2
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2
'(

1
( )t

(1.12) 

We refer to this as a coherence, a coherent superposition state. If we include momentum (a 

wavevector) of particle associated with this state, we often describe this as a wavepacket. 

Time Evolution Operator 

More generally, we want to understand how the wavefunction evolves with time. The TDSE is 

linear in time. Since the TDSE is deterministic, we will define an operator that describes the 

dynamics of the system: 

  
! t( ) = Û t,t

0( )! t
0( ) (1.13)


U is a propagator that evolves the quantum system as a function of time. For the time-

independent Hamiltonian: 

   

!

!t
" r , t( ) +

iĤ

!
" r , t( ) = 0

To solve this, we will define an operator 
   
T̂ = exp !iĤt / !( ) , which is a function of an operator. 

(1.14)


A function of an operator is defined through its expansion in a Taylor series: 



   
T̂

!1
= exp iĤt !( )   Ĥ

  Ĥ   T̂   T̂
!1

   

!
!t

exp
iĤt

!

"

#$
%

&'
( r , t( )

)

*
+
+

,

-
.
.
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t
0
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exp
iĤt

!

!

"#
$

%&
' r , t( ) ( exp

iĤt
0

!

!

"
#

$

%
&' r , t

0( ) = 0

   

! r , t( ) = exp
" Ĥ t " t

0( )
!

#

$
%

&

'
(! r , t

0( )

   

Û t, t
0( ) = exp

! Ĥ t ! t
0( )

!

"

#
$

%

&
'

   
!

n
r , t( ) = e

"E
n

t"t0( )/!
!

n
r , t

0( )

  Â

  Â
  
Â!

n
= a

n
!

n

  
f Â( )!n

= f a
n( )!n
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(1.15)


   

T̂ = exp !iĤt !( ) = 1!
iĤt

!
+

1

2!

iĤt

!

"

#$
%

&'

2

! "

= f Ĥ( )

: Given a set of eigenvalues and 

eigenvectors of , you can show by expanding the function 

as a polynomial that 

Note: about functions of an operator 

, i.e., 

You can also confirm from the expansion that 

commutes with . Multiplying eq. (1.14) from the left by 

, noting that 

, we can write 

is Hermetian and 

, (1.16) 

and integrating , we get 

(1.17) 

(1.18) 

So, we see that the time-propagator is 

, (1.19) 

and therefore 

. (1.20) 
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In which I have used the definition of the exponential operator for 
   
e
! iĤt /! "

n
= e

! iE
n
t !

"
n

. 

Alternatively, if we substitute the projection operator (or identity relationship) 

into eq. (1.19), we see 

  

!
n

!
n

n

" = 1

   

Û t, t
0( ) = e

! iĤ t!t0( )/! "
n

"
n

n

#

= e
! i$

n
t!t0( )

n

# "
n

"
n

. 
  

!
n
=

E
n

!

(1.21)


(1.22)


This form is useful when 
 
!

n
are characterized. So now we can write our time-developing wave-

function as 

  

!
n

r , t( ) = "
n

e
# i$

n
t# t

0( )

n

% "
n
!

n
r , t

0( )

= e
# i$

n
t# t

0( )

n

% c
n

= c
n

t( )
n

% "
n

. (1.23)


As written in eq. (1.13), we see that the time-propagator 
  
Û t, t

0( ) acts to the right (on 

kets) to evolve the system in time. The evolution of the conjugate wavefunctions (bras) is under 

the Hermetian conjugate of 
  
Û t, t

0( ) acting to the left: 

  
! t( ) = ! t

0( ) Û
†

t,t
0( ) (1.24)


From its definition as an expansion and recognizing   Ĥ as Hermetian, you can see that 

   

Û
†

t,t
0( ) = exp

iĤ t ! t
0( )

!

"

#

$
$

%

&

'
'

(1.25)




1-6 

1.2. Time-evolution of a coupled two-level system (2LS) 

Let’s use this propagator using an example that we will refer to often. It is common to reduce or 

map quantum problems onto a 2LS. We will pick the most important states –the ones we care 

about− and then discard the remaining degrees of freedom, or incorporate them as a collection or 

continuum of other degrees of freedom termed a “bath”, 
  
Ĥ = Ĥ

0
+ Ĥ

bath
. 

We will discuss the time-evolution of a 2LS with a time-independent Hamiltonian. 

Consider a 2LS with two (unperturbed) states 
 
!

a
and 

 
!

b
with energies 

 
!

a
and 

 
!

b
, which are 

then coupled through an interaction 
 
V

ab
. We will ask: If we prepare the system in state 

 
!

a
, what 

is the time-dependent probability of observing it in 
 
!

b
? 

  

Ĥ = !
a
"

a
!

a
+ !

b
"

b
!

b

+ !
a

V
ab

!
b
+ !

b
V

ba
!

a

=
"

a
V

ab

V
ba

"
b

#

$
%

&

'
(

(1.26) 

The states 
 
!

a
and 

 
!

b
are in the uncoupled or noninteracting basis, and when we talk about 

spectroscopy these might refer to nuclear or electronic states in what I refer to as a “site” basis or 

“local” basis. The coupling V mixes these states, giving two eigenstates of   Ĥ , !
+

and !
"

, 

with corresponding energy eigenvalues !
+

and !
"

. 

We start by searching for the eigenvalues and eigenfunctions of the Hamiltonian. Since 

  
H

ij
= H

ji

*( )the Hamiltonian is Hermetian, , we write 

  
V

ab
=V

ba

*
=V e

! i" (1.27)




  
!
±
= E ± " sec2#

!
±   

Ĥ !
±

= "
±
!

±

 
!

+
= c

a
!

a
+ c

b
!

b
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Ĥ =
!

a
V e

" i#

V e
+ i# !

b

$

%
&

'

(
) (1.28)


Now we define variables for the mean energy and energy splitting between the uncoupled states 

  

E =
!

a
+ !

b

2

  

! =
"

a
# "

b

2

(1.29) 

(1.30) 

Then we obtain the eigenvalues of the coupled system by solving the secular equation 

, (1.31) 
  
det H ! "I( ) = 0

giving 

  
!
±
= E ± "

2
+V

2 (1.32) 

Because the expressions get messy, we don’t use this expression to find the eigenvectors for the 

coupled system, !
±

. Rather, we use a substitution where we define: 

  

tan2! =
V

"
(1.33) 

with 0 ≤ θ ≤ π/2. Now, 

  

Ĥ = E I + !
1 tan2"e

# i$

tan2"e
+ i$ #1

%

&'
(

)*
. (1.34)


and we can express the eigenvalues as 

(1.35) 

We 

e.g. 

want to find the eigenstates of the Hamiltonian, 

. This gives 

from where 

  

!
+

= cos" e
# i$ / 2 !

a
+ sin" e

i$ / 2 !
b

!
#

= # sin" e
# i$ / 2 !

a
+ cos" e

i$ / 2 !
b

(1.36)
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Note that this basis is orthonormal (complete and orthogonal): 
 
!

+
!

+
+ !

"
!

"
= 1 . 

Now, let’s examine the expressions for the eigenstates in two limits: 

(a) Weak coupling (V/Δ << 1). Here θ ≈ 0, and !
+

corresponds to 
 
!

a
weakly perturbed 

by the 
 
V

ab
interaction. !

"
corresponds to 

 
!

b
. In another way, as  ! " 0 , we 

find 
 
!

+
" !

a
and 

 
!

"
# !

b
. 

(b) Strong coupling (V/Δ >> 1). In this limit θ = π/4, and the a/b basis states are 

indistinguishable. The eigenstates are symmetric and antisymmetric combinations: 

  

!
±

=
1

2

!
b
± !

a( ) (1.37)


Note from eq. (1.36) that the sign of V dictates whether !
+

or !
"

corresponds to the 

symmetric or antisymmetric combination. For negative V >> Δ, θ = −π/4, and the 

correspondence changes. 

We can schematically represent the energies of these states with the following diagram. Here we 

!
±

explore the range of available given a fixed value of the coupling V and a varying splitting Δ. 
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This diagram illustrates an avoided crossing effect. The strong coupling limit is equivalent to a 

degeneracy point (Δ~0) between the states 
 
!

a
and 

 
!

b
. The eigenstates completely mix the 

unperturbed states, yet remain split by the strength of interaction 2V. Such an avoided crossing 

is observed where two weakly interacting potential energy surfaces cross with one another at a 

particular nuclear displacement. 

The time-evolution of this system is given by our time-evolution operator. 

  
U t, t

0( ) = !
+

e
" i#

+
t" t

0( )
!

+
+ !

"
e
" i#

"
t" t

0( )
!

"
(1.38)


where 
 
!

±
= "

±
! . Since 

 
!

a
and 

 
!

b
are not the eigenstates, preparing the system in state 

 
!

a

will lead to time-evolution! Let’s prepare the system so that it is initially in 
 
!

a
. 

  
t
0
= 0( ) ! 0( ) = "

a
(1.39)


What is the probability that it is found in state 
 
!

b
at time  t ? 

  

P
ba

t( ) = !
b
" t( )

2

= !
b

U t, t
0( ) !

a

2
(1.40)
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To evaluate this, you need to know the transformation from the 
 
!

a
!

b
basis to the !

±
basis, 

given in eq. (1.36). This leads to 

  

P
ba

t( ) =
V

2

V
2
+ !

2
sin

2
"

R
t (1.41)


   

!
R
=

1

!
"

2
+V

2 . (1.42)


 
!

R
, the Rabi Frequency, represents the frequency at which probability amplitude oscillates 

between 
 
!

a
and 

 
!

b
states. 

Notice for (the stationary states), and there is no time-dependence.   V ! 0 , 
  
!

±
"!

a,b

For  V >> ! , then 
  

!
R
=

V

!
and   P = 1 after 

   

t =
!

2"
R

=
!!

2V
. 
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Quantities we often calculate 

Correlation amplitude: Measures the resemblance between the state of your system at time  t

and a target state ! : 

 
C t( ) = ! " t( ) (1.43)


  
P t( ) = C t( )

2

wavefunction in your eigenbasis 
 
!

n

The probability amplitude . If you express the initial state of your 

  

! 0( ) = c
n

n

" #
n

  

C t( ) = ! U t,t
0( )" 0( )

= c
m

* #
m
#

j
e
$ i%

j
t
#

j
#

n
c

n

m,n, j

&

= c
m

*

n

& c
n
e
$ i%

n
t

(1.44)


(1.45)


Here 
 
c

m
are the coefficients that project your target wavefunction ! onto your 

eigenbasis. Note 
 
!

m
!

n
= "

nm
. 

Expectation values give the time-dependent average value of an operator. Physical 

observables correspond to the expectation values of Hermetian operators 
  

Â = Â
†( ) , and 

therefore must be real. Expectation values of operators are given by 

  

Â t( ) = ! t( ) Â! t( )

= ! 0( ) Û
†

t,0( ) ÂÛ t,0( ) ! 0( )
(1.46) 

For an initial state 
  

! 0( ) = c
n

n

" #
n
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(1.47)


  

! t( ) = Û t,0( ) ! 0( ) = e
" i#

n
t

c
n
$

n

n

% = c
n

t( ) $
n

n

%

! t( ) = ! 0( ) Û
†

t,0( ) = e
i#

m
t

c
m

* $
m

m

% = c
m

*
t( ) $

m

m

%

  

Â t( ) = c
n
c

m

*
e
! i"

nm
t

#
m

Â #
n

m,n

$ = c
n

t( )c
m

*
t( )

m,n

$ A
mn

  

!
nm

=
E

n
" E

m

!
=!

n
"!

m

(1.48)


(1.49)


Note that for a Hermetian operator eq. (1.48) is real. 

Readings 

The material in this section draws from the following: 
1.	 Cohen-Tannoudji, C.; Diu, B.; Lalöe, F. Quantum Mechanics (Wiley-Interscience, Paris, 

1977) pp. 405-420. 
2.	 Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford University Press: 

New York, 1995) Ch.2 . 
3.	 Liboff, R. L. Introductory Quantum Mechanics (Addison-Wesley, Reading, MA, 1980) 

p. 77. 
4.	 Sakurai, J. J. Modern Quantum Mechanics, Revised Edition (Addison-Wesley, Reading, 

MA, 1994). 



  Â   Â
!1

  Â  A
T

 A
T
= !A

  Â

  

Tr Â( ) = A
qq

q

!

1) The inverse of (written ) is defined by 

2) The transpose of (written ) is 

If then the matrix is antisymmetric 

1.3. APPENDIX: PROPERTIES OF OPERATORS 
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   Â
!1

Â = ÂÂ
!1
= Î (1.50) 

 
A

T( )
nq
= A

qn
(1.51) 

3) The trace of is defined as 

(1.52) 

4) The Hermetian Adjoint of   Â (written   Â† ) is 

  

Â
†
= Â

T( )
*

Â
†( )

nq
= Â

qn( )
* (1.53)


5)   Â is Hermetian if 

  

Â
†
= Â

Â
T( )

*

= A

(1.54) 

If   Â is Hermetian, then   Ân is Hermetian and   eÂ is Hermetian. 

6)   Â is a unitary operator if: 

  

Â
†
= Â

!1

Â
T( )

*

= Â
!1

ÂÂ
†
= 1 " ÂÂ

†( )
nq

= #
nq

(1.55)



