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Lecture #1: Matrices are Useful in Spectroscopic Theory 

For next time, read handout on the Van Vleck transformation and look at the notes on coupled harmonic
oscillators. 

Outline 

* Correspondences bra 
⎛ ⎞ row column 

i = ⎜ ⎟ N ×  1 column vector 
⎝ ⎠ 

ψi → 

ket 
ψ*

i →	 i = 1 ×  N row vector 

operator O → O N ×   N square matrix 

*	 Solution of Schrödinger Equation corresponds to solving a determinantal secular equation for the
{Ek} 

ψ	  ;*	 The {Ek} are the Hkk in the special “diagonal” representation of H

*	 The {ψk} are obtained from the basis states {φk} as columns of the unitary matrix T from the 
similarity transformation T†HφT = Hψ that “diagonalizes” Hφ; 

*	 Matrix representation of arbitrary f(Q). 

Usual procedure to obtain a fit model. 

e.g. Born- expressed Van Vleck a finite matrix 
Oppenheimer in terms of transformation expressed in combine 
and normal structure ↓ terms of linearly
mode parameters introduces microscopic dependent
separations e.g. fij force many small

exact H a a complete exact H truncate H 

molecular 
constants 

Fit model

* finite 
simplified
matrix
OR
* algebraic
formulas
expressed in
terms of
effective
molecular
constants

Dunham
constants 
ωe, ωexe

Approximate H	 perturbation

theory
differential set of basis 

operator functions an infinite 
matrix 

model 
of variables constants terms parameters 

not necessarily
the same even 
if they have 
same name 
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Matrices are useful because: 

*	 they display all necessary information; 

*	 can be “read” and simplified by perturbation theory “order sorting” via 
Ei
o

H
− 
ij 

E j 

;o 

*	 labor saving tricks for avoiding the evaluation of unnecessary integrals, such as formulas 
for all matrix elements of Q  and P  in the Harmonic Oscillator basis set. 

No integrals actually evaluated.

No functions actually looked at.


Quantum Mechanics Operators follow the rules of matrix multiplication. 

e.g. ∫ ψ*
i 
(AB ) ψ jdτ = ∑ ( ∫ ψ*

i Aψkdτ)( ∫ ψ*
k Bψ jdτ)

k 

= ∑ AikBkj = (AB)ij 
k 

This is very useful because we can generate many matrices by simple operations on one matrix. 

E.g.	 Q = R – Re 

V(Q) = ∑ cn Qn


n


matrix of Qn (Qn) = (Q)n Q × Q × … Q


so instead of evaluating Q1, Q2, Q3, etc. we just evaluate Q and derive all the rest by matrix operations.


completeness
of {ψ} 

↑ formulas, not integrals! 

⎡* shortcuts to selection rules 
There is even some diagrammatic insight ⎢

⎣* calculations of a specific element of Qn 
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�v = ±1 non-zero matrix elements of Q

�v = 0, ±2 selection rules

At the end of this lecture we will see that we are
not restricted to integer powers of Q.
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etc.

Suppose we have a convenient and complete (orthonormal) basis set {�i}.

Any arbitrary function (including an eigenfunction of H� ) can be expanded in terms of the {�}.

wavefunction picture

N

� =k � ak *
� � � �i i i kd� = ak

i

i=1

can be �

matrix picture
� = U�

� �k k

�0	
� �
�� �

� = �1 �
� �
�� �
� �
�0


�

*
� �k � k

U is a transformation that converts {�} into {�}.

� �i i

= 0…1…0
�

� 0	
�� �
� �

� = �1 �
� �
�
� �
�
� 0�


�

*
� �i � i

N � 1
= 0…1…0column matrix �
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N 

We know ψk = ∑ aki φi 
i=1 

We want ψ = Uφ where U is N × N matrix that transforms φ into ψ. 

By this we mean 

⎛
0
 Uk1 ⎛
⎞
 0
 ⎛
⎞
 0
⎛
⎞
 ⎞




1





⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎜
⎝


⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎟
⎠








⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎜
⎝


⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎟
⎠


⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎜
⎝








⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎟
⎠


⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎜
⎝











⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎟
⎠


0
 Uk2 

∑
Ukiφ iψk =
 +
 +…
=
 =

i 

0
 0
 0
 UkNψ
 φ
 φ
 φ

k-th row of U 
⎞
⎛
0
 Uk1 







⎛
⎞

⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎜
⎝





1





⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎟
⎠


⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎜
⎝




UkN 

⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎟
⎠


=


0
 ψ
 φ


Uki = ai
k = ∫ φ*

i ψkdτ 
We can go in the opposite direction

U–1ψ = φ 

and show that U–1 = U† U−
ij 
1 = U*

ji 

φi is the i-th row of U–1 or the i-th column of U*. 
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Derivation of Secular Determinant


Now for every operator there is a matrix representation.


O11  O1N 

  

ON1  ONN 

⎛
 ⎞

⎟ 
⎟⎟
⎠


⎜ 
⎜⎜
⎝


O → Oφ =


Oij ∫
 φ*i Oφ jdτ=


Schrödinger Equation in ψ eigenbasis picture 

Hψk = Ek ψk 
∞ 

ψk = ∑ ai 
kφ i 

mixing coefficient 

basis function - convenient 

usually defined as
eigenfunctions of a parti=1
 of H  called H° 
H°φ i = E°

i φ i 

Matrix notation: 
Hij 

φ = ∫ φ*i Hφ jdτ = φ 
i H j φ 
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H11 H1N 

HN1 

⎜
H  ⎜21 

⎜  
⎜ 

⎜
⎜
⎜
⎜


φφ

φ 

φ 

⎜
⎜
⎜
⎜


⎞
⎛
⎞
⎛
⎞
⎛
 
 a1
k a1

k 

⎞

⎟
⎟
⎟
⎟

⎠


⎛

⎜
⎜
⎜
⎜

⎝


⎞

⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎟
⎠


initially unknown
mixing coefficients initially unknown

energies⎞


φ


⎟
⎟
⎟
⎟


= Ek 

⎟
⎟
⎟
⎟


⎟
⎟
⎟
⎟


⎠
⎝
φ⎠


∑

i 

⎛

⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎜
⎝


⎞

⎟
⎟
⎟
⎟

⎠


=


⎞


a1
k 



⎜
⎜
⎜
⎜




aN
k 

⎛


⎝


⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎠


⎝
φ⎠


ai
kH1i 

H2i ai
k 

φ

∑


∑


i 

i 

⎛


representation
⎛
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎝


∑

i 

∑


∑


i 

i 

⎝


⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
⎜ ⎟ 

A system of N linear homogeneous equations in N unknowns (aki i = 1…N) . A nontrivial solution 

ai
kexists if the determinant of coefficients of the unknown { }  is zero. 

0


0





0


H11 − Ek H12 H1N unit matrix 
0 = H21 H22 − Ek = |Hφ 

HNN − Ek 

–1Ek| 

=


)


aN
k 

ai
k H1i − δ1iEk 

etc. 

(


= Ek 




HNi ai
k 

move everything into one column matrix 

aN
k 

(H2iai
k − δ2iEkai

k ) 

(H1iai
k − δ1iEkai

k ) 

etc. 

convenient 

LHS =
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This is the secular determinant. Must solve for special values of Ek which satisfy the requirement
0 = |Hφ – 1Ek|. 
These are eigenvalues of H . {Ek} k = 1, 2, … N
COMPUTERS! 

1. start with complete set {φ}
2. compute all Hφ matrix elements 
3. “diagonalize” Hφ	 time required ∝ N3 

ai
k4. solve for { } : one set of N coefficients for each of the N eigenvalues. 

How to “diagonalize” Hφ? Seek a similarity transformation T. 
H11 0ψ ⎞


⎟
⎟
⎟
⎟


ψHNN 

Hii 
ψ ≡ Ek are the eigenvalues we seek. 

Computer generates T iteratively (Jacobi Rotations, see handout) 

Special properties: 

* all Quantum Mechanical operators (that correspond to real observables) are “Hermitian” (real
eigenvalues) which means that their matrix representations have the property


O = O† Oij = O*
ji


*	 T is “unitary” 
T†T = 1 (i.e., T† = T–1) 

0
H22 

ψ 

⎛

⎜
⎜
⎜
⎜


⎠
⎝




T−1HφT = Hφ = 
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ai
kNow I’ll show that T contains the information we seek about the { } . 

⎞
0 
 

1 

⎛
⎞
0 
 

1 

⎛


φ


⎞


T†HφTψk = Ekψk 

T TTleft multiply by † 1= 
†TT H T TEφ ψ ψ= k k k 

H T TE( ) ( )φ ψ ψ= an eigenvector of Hφ

k k k 

⎛
⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎜
⎝

⎞

⎠

an eigenvalue equation

⎛
⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎜ 

⎞ 
  


1   

 

⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎟
⎠


ψ 

⎟
⎟ 
⎟ 
⎟ 
⎟
⎟
⎠

 

0 

ψ


⎜
⎜ 
⎜ 
⎜ 
⎜
⎜
⎝


⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎟


= Ek 

⎟
⎟ 
⎟ 
⎟ 
⎟
⎟
⎠
ψ 

T1k 

⎝




TNk 

 

⎝

⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎜ 

ψk 

ψ


⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎟
⎠




0


⎛

⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎜
⎝


a1
k 

aN
k 

=


kth column of T 

The columns of T are the eigenvectors of H in the φ representation. 

φ = Tψ 

ψ = T†φ 

0


T†HφT = Hφ where Hψ 

0


Tψk = T =
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Special example of finding matrix representation of any general function of a matrix. 

Suppose we want Q3/2 

*	 Generate Qφ in the convenient φ basis 

*	 diagonalize Qφ [not the representation that diagonalizes H] 
⎛
Q11 

0  0 

QNN 
θ 

θ 0 0
 ⎞

⎟ 
⎟
⎟
⎠


⎜ 
⎜
⎜
⎝


T†QφT = Qθ =


0 0


)3/2 ⎛
 ⎞
(
Q11 

0  0 

QNN 
θ 

θ 0 0


⎜	 ⎟ 

*	 transform back to φ basis 
T(Qθ)3/2T† = [Q3/2]φ 

⎟
⎟
⎟	
⎠

The only reason why this is not as wonderful and general as it seems is that it is

are infinite. Still, truncation at a finite (large) dimension gives accurate results for
the lowest few eigenstates. Accuracy can be tested by doing calculation twice,
once for N N and once for (N + 1) (N + 1) and looking for stability of results × × 

impossible to diagonalize an infinite matrix and all Harmonic Oscillator basis sets

for the lowest levels of interest. 

⎜
⎜
⎜	
⎝

* (Qθ )3/2 
=


)3/2 (
0 0



